Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 077404    DOI: 10.1088/1674-1056/abe0c2
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Lateral magnetic stiffness under different parameters in a high-temperature superconductor levitation system

Yong Yang(杨勇)1,† and Yun-Yi Wu(吴云翼)2,3,‡
1 School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China;
2 China Three Gorges Science and Technology Research Institute, Beijing 100036, China;
3 Physikalisches Institute B, RWTH Aachen, Aachen 52056, Germany
Abstract  Magnetic stiffness determines the stability of a high-temperature superconductor (HTS) magnetic levitation system. The quantitative properties of the physical and geometrical parameters that affect the stiffness of HTS levitation systems should be identified for improving the stiffness by some effective methods. The magnetic stiffness is directly related to the first-order derivative of the magnetic force with respect to the corresponding displacement, which indicates that the effects of the parameters on the stiffness should be different from the relationships between the forces and the same parameters. In this paper, we study the influences of some physical and geometrical parameters, including the strength of the external magnetic field (B0) produced by a rectangular permanent magnet (PM), critical current density (Jc), the PM-to-HTS area ratio (α), and thickness ratio (β), on the lateral stiffness by using a numerical approach under zero-field cooling (ZFC) and field cooling (FC) conditions. In the first and second passes of the PM, the lateral stiffness at most of lateral positions essentially increases with B0 increasing and decreases with β increasing in ZFC and FC. The largest lateral stiffness at every lateral position is almost produced by the minimum value of Jc, which is obviously different from the lateral force-Jc relation. The α-dependent lateral stiffness changes with some parameters, which include the cooling conditions of the bulk HTS, lateral displacement, and movement history of the PM. These findings can provide some suggestions for improving the lateral stiffness of the HTS levitation system.
Keywords:  high-temperature superconductor      magnetic levitation      lateral stiffness      lateral force  
Received:  30 September 2020      Revised:  09 January 2021      Accepted manuscript online:  28 January 2021
PACS:  74.72.-h (Cuprate superconductors)  
  84.71.Ba (Superconducting magnets; magnetic levitation devices)  
  85.25.Am (Superconducting device characterization, design, and modeling)  
  85.70.Rp (Magnetic levitation, propulsion and control devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11572232).
Corresponding Authors:  Yong Yang, Yun-Yi Wu     E-mail:  yangyong@xidian.edu.cn;wu_yunyi@ctg.com.cn

Cite this article: 

Yong Yang(杨勇) and Yun-Yi Wu(吴云翼) Lateral magnetic stiffness under different parameters in a high-temperature superconductor levitation system 2021 Chin. Phys. B 30 077404

[1] Bernstein P and Noudem J 2020 Supercond. Sci. Technol. 33 033001
[2] Wang J S, Wang S Y, Zeng Y W, et al. 2002 Physica C 378-381 809
[3] Mattos L S, Rodriguez E, Costa F, Sotelo G G, de Andrade R and Stephan R M 2016 IEEE Trans. Appl. Supercond. 26 3600704
[4] Werfel F N, Floegel-Delor U, Rothfeld R, Riedel T, Goebel B, Wippich D and Schirrmeister P 2012 Supercond. Sci. Technol. 25 014007
[5] Ai L W, Zhang G M, Li W J, Liu G L and Liu Q 2018 Physica C 550 57
[6] Miyazaki Y, Mizuno K, Yamashita T, Ogata M, Hasegawa H, Nagashima K, Mukoyama S, Matsuoka T, Nakao K, Horiuch S, Maeda T and Shimizu H 2016 Cryogenics 80 234
[7] Ozturk K, Kabaer M, Abdioglu M, Patel A and Cansiz A 2016 J. Alloys Compd. 689 1076
[8] Bernstein P, Colson L, Dupont L and Noudem J 2017 Supercond. Sci. Technol. 30 065007
[9] Cansiza A, Yildizerb İ and McGuiness D T 2019 Cryogenics 98 60
[10] Zhao B J, Deng Z G, Hu Z X, Liu Y, Zhang S and Zheng J 2020 IEEE Trans. Appl. Supercond. 30 6800305
[11] Ma K B, Postrekhin Y V and Chu W K 2003 Rev. Sci. Instrum. 74 4989
[12] Siems S O and Canders W R 2004 Supercond. Sci. Technol. 18 S86
[13] Storey J G, Szmigiel M, Robinson F, Wimbush S C and Badcock R A 2020 IEEE Trans. Appl. Supercond. 30 0600706
[14] Valiente-Blanco I, Diez-Jimenez E, Cristache C, Alvarez-Valenzuela M A and Perez-Diaz J L 2014 Tribol. Lett. 54 213
[15] Moon F C, Yanoviak M M and Ware R 1988 Appl. Phys. Lett. 52 1534
[16] Moon F C, Weng K C and Chang P Z 1989 J. Appl. Phys. 66 5643
[17] Riise A B, Johansen T H, Bratsberg H, Koblischka M R and Shen Y Q 1999 Phys. Rev. B 60 9855
[18] Navau C and Sanchez A 2002 Supercond. Sci. Technol. 15 1445
[19] Valle N D, Sanchez A, Pardo E, Navau C and Chen D X 2007 Appl. Phys. Lett. 91 112507
[20] Ozturk K, Sahin E, Abdioglu M, Kabaer M, Celik S, Yanmaz E and Kucukomeroglu T 2015 J. Alloys Compd. 643 201
[21] Espenhahn T, Wunderwald F, Möller M, Sparing M, Hossain M, Fuchs G, Abdkader A, Cherif C, Nielsch K and Hühne R 2020 J. Phys. D: Appl. Phys. 53 035002
[22] Hull J R and Cansiz A 1999 J. Appl. Phys. 86 6396
[23] Yang Y and Li C S 2017 AIP Adv. 7 105327
[24] Yang Y and Li C S 2017 AIP Adv. 7 125028
[25] Yang Y and Wu Y Y 2020 J. Appl. Phys. 128 053905
[26] Sotelo G, Ferreira A and Rubers de Andrade F 2005 IEEE Trans. Appl. Supercond. 15 2253
[27] Badía-Majós A, Aliaga A, Letosa-Fleta J, Alfonso M M and Roche J P 2015 IEEE Trans. Appl. Supercond. 25 3601810
[28] Basaran S and Sivrioglu S 2017 Supercond. Sci. Technol. 30 035008
[29] Cansiz A and McGuiness D T 2018 IEEE Trans. Appl. Supercond. 28 5201208
[30] Kurbatova E 2018 IEEE Trans. Appl. Supercond. 28 5207704
[31] Antončík F, Lojka M, Hlásek T, Bartůněk V, Valiente-Blanco I, Perez-Diaz J L and Jankovský O 2020 Supercond. Sci. Technol. 33 045010
[32] Takagi T, Hashimoto M, Arita S, Norimatsu S, Sugiura T and Miya K 1990 IEEE Trans. Magn. 26 474
[33] Yang Y and Zheng X J 2008 Supercond. Sci. Technol. 21 015021
[34] Gou X F, Yang Y and Zheng X J 2004 Appl. Math. Mech. -Engl. Ed. 25 297
[35] Murakami M, Gotoh S, Fujimoto H, Yamaguchi K, Koshizuka N and Tanaka S 1991 Supercond. Sci. Technol. 4 S43
[1] Angular dependence of vertical force and torque when magnetic dipole moves vertically above flat high-temperature superconductor
Yong Yang(杨勇), Shuai-Jie Yang(杨帅杰), Wen-Li Yang(杨文莉), and Yun-Yi Wu(吴云翼). Chin. Phys. B, 2021, 30(12): 127401.
[2] Excessive levitation for the efficient loading of large-volume optical dipole traps
Xiaoqing Wang(王晓青), Yuqing Li(李玉清), Guosheng Feng(冯国胜), Jizhou Wu(武寄洲), Jie Ma(马杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2018, 27(1): 018702.
[3] Electron-phonon coupling in cuprate and iron-based superconductors revealed by Raman scattering
Zhang An-Min (张安民), Zhang Qing-Ming (张清明). Chin. Phys. B, 2013, 22(8): 087103.
[4] GINZBURG-LANDAU THEORY AND VORTEX LATTICE OF HIGH-TEMPERATURE SUPERCONDUCTORS
Zhou Shi-ping (周世平). Chin. Phys. B, 2001, 10(6): 541-549.
No Suggested Reading articles found!