CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Lateral magnetic stiffness under different parameters in a high-temperature superconductor levitation system |
Yong Yang(杨勇)1,† and Yun-Yi Wu(吴云翼)2,3,‡ |
1 School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China; 2 China Three Gorges Science and Technology Research Institute, Beijing 100036, China; 3 Physikalisches Institute B, RWTH Aachen, Aachen 52056, Germany |
|
|
Abstract Magnetic stiffness determines the stability of a high-temperature superconductor (HTS) magnetic levitation system. The quantitative properties of the physical and geometrical parameters that affect the stiffness of HTS levitation systems should be identified for improving the stiffness by some effective methods. The magnetic stiffness is directly related to the first-order derivative of the magnetic force with respect to the corresponding displacement, which indicates that the effects of the parameters on the stiffness should be different from the relationships between the forces and the same parameters. In this paper, we study the influences of some physical and geometrical parameters, including the strength of the external magnetic field (B0) produced by a rectangular permanent magnet (PM), critical current density (Jc), the PM-to-HTS area ratio (α), and thickness ratio (β), on the lateral stiffness by using a numerical approach under zero-field cooling (ZFC) and field cooling (FC) conditions. In the first and second passes of the PM, the lateral stiffness at most of lateral positions essentially increases with B0 increasing and decreases with β increasing in ZFC and FC. The largest lateral stiffness at every lateral position is almost produced by the minimum value of Jc, which is obviously different from the lateral force-Jc relation. The α-dependent lateral stiffness changes with some parameters, which include the cooling conditions of the bulk HTS, lateral displacement, and movement history of the PM. These findings can provide some suggestions for improving the lateral stiffness of the HTS levitation system.
|
Received: 30 September 2020
Revised: 09 January 2021
Accepted manuscript online: 28 January 2021
|
PACS:
|
74.72.-h
|
(Cuprate superconductors)
|
|
84.71.Ba
|
(Superconducting magnets; magnetic levitation devices)
|
|
85.25.Am
|
(Superconducting device characterization, design, and modeling)
|
|
85.70.Rp
|
(Magnetic levitation, propulsion and control devices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11572232). |
Corresponding Authors:
Yong Yang, Yun-Yi Wu
E-mail: yangyong@xidian.edu.cn;wu_yunyi@ctg.com.cn
|
Cite this article:
Yong Yang(杨勇) and Yun-Yi Wu(吴云翼) Lateral magnetic stiffness under different parameters in a high-temperature superconductor levitation system 2021 Chin. Phys. B 30 077404
|
[1] Bernstein P and Noudem J 2020 Supercond. Sci. Technol. 33 033001 [2] Wang J S, Wang S Y, Zeng Y W, et al. 2002 Physica C 378-381 809 [3] Mattos L S, Rodriguez E, Costa F, Sotelo G G, de Andrade R and Stephan R M 2016 IEEE Trans. Appl. Supercond. 26 3600704 [4] Werfel F N, Floegel-Delor U, Rothfeld R, Riedel T, Goebel B, Wippich D and Schirrmeister P 2012 Supercond. Sci. Technol. 25 014007 [5] Ai L W, Zhang G M, Li W J, Liu G L and Liu Q 2018 Physica C 550 57 [6] Miyazaki Y, Mizuno K, Yamashita T, Ogata M, Hasegawa H, Nagashima K, Mukoyama S, Matsuoka T, Nakao K, Horiuch S, Maeda T and Shimizu H 2016 Cryogenics 80 234 [7] Ozturk K, Kabaer M, Abdioglu M, Patel A and Cansiz A 2016 J. Alloys Compd. 689 1076 [8] Bernstein P, Colson L, Dupont L and Noudem J 2017 Supercond. Sci. Technol. 30 065007 [9] Cansiza A, Yildizerb İ and McGuiness D T 2019 Cryogenics 98 60 [10] Zhao B J, Deng Z G, Hu Z X, Liu Y, Zhang S and Zheng J 2020 IEEE Trans. Appl. Supercond. 30 6800305 [11] Ma K B, Postrekhin Y V and Chu W K 2003 Rev. Sci. Instrum. 74 4989 [12] Siems S O and Canders W R 2004 Supercond. Sci. Technol. 18 S86 [13] Storey J G, Szmigiel M, Robinson F, Wimbush S C and Badcock R A 2020 IEEE Trans. Appl. Supercond. 30 0600706 [14] Valiente-Blanco I, Diez-Jimenez E, Cristache C, Alvarez-Valenzuela M A and Perez-Diaz J L 2014 Tribol. Lett. 54 213 [15] Moon F C, Yanoviak M M and Ware R 1988 Appl. Phys. Lett. 52 1534 [16] Moon F C, Weng K C and Chang P Z 1989 J. Appl. Phys. 66 5643 [17] Riise A B, Johansen T H, Bratsberg H, Koblischka M R and Shen Y Q 1999 Phys. Rev. B 60 9855 [18] Navau C and Sanchez A 2002 Supercond. Sci. Technol. 15 1445 [19] Valle N D, Sanchez A, Pardo E, Navau C and Chen D X 2007 Appl. Phys. Lett. 91 112507 [20] Ozturk K, Sahin E, Abdioglu M, Kabaer M, Celik S, Yanmaz E and Kucukomeroglu T 2015 J. Alloys Compd. 643 201 [21] Espenhahn T, Wunderwald F, Möller M, Sparing M, Hossain M, Fuchs G, Abdkader A, Cherif C, Nielsch K and Hühne R 2020 J. Phys. D: Appl. Phys. 53 035002 [22] Hull J R and Cansiz A 1999 J. Appl. Phys. 86 6396 [23] Yang Y and Li C S 2017 AIP Adv. 7 105327 [24] Yang Y and Li C S 2017 AIP Adv. 7 125028 [25] Yang Y and Wu Y Y 2020 J. Appl. Phys. 128 053905 [26] Sotelo G, Ferreira A and Rubers de Andrade F 2005 IEEE Trans. Appl. Supercond. 15 2253 [27] Badía-Majós A, Aliaga A, Letosa-Fleta J, Alfonso M M and Roche J P 2015 IEEE Trans. Appl. Supercond. 25 3601810 [28] Basaran S and Sivrioglu S 2017 Supercond. Sci. Technol. 30 035008 [29] Cansiz A and McGuiness D T 2018 IEEE Trans. Appl. Supercond. 28 5201208 [30] Kurbatova E 2018 IEEE Trans. Appl. Supercond. 28 5207704 [31] Antončík F, Lojka M, Hlásek T, Bartůněk V, Valiente-Blanco I, Perez-Diaz J L and Jankovský O 2020 Supercond. Sci. Technol. 33 045010 [32] Takagi T, Hashimoto M, Arita S, Norimatsu S, Sugiura T and Miya K 1990 IEEE Trans. Magn. 26 474 [33] Yang Y and Zheng X J 2008 Supercond. Sci. Technol. 21 015021 [34] Gou X F, Yang Y and Zheng X J 2004 Appl. Math. Mech. -Engl. Ed. 25 297 [35] Murakami M, Gotoh S, Fujimoto H, Yamaguchi K, Koshizuka N and Tanaka S 1991 Supercond. Sci. Technol. 4 S43 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|