Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 100201    DOI: 10.1088/1674-1056/24/10/100201
GENERAL Prev   Next  

Singular and non-topological soliton solutions for nonlinear fractional differential equations

Ozkan Guner
Cankiri Karatekin University, Faculty of Economics and Administrative Sciences, Department of International Trade, Cankiri 18100, Turkey
Abstract  

In this article, the fractional derivatives are described in the modified Riemann-Liouville sense. We propose a new approach, namely an ansatz method, for solving fractional differential equations (FDEs) based on a fractional complex transform and apply it to solve nonlinear space-time fractional equations. As a result, the non-topological as well as the singular soliton solutions are obtained. This method can be suitable and more powerful for solving other kinds of nonlinear fractional FDEs arising in mathematical physics.

Keywords:  solitons      ansatz method      the space-time fractional Boussinesq equation      the space-time fractional (2+1)-dimensional breaking soliton equations  
Received:  10 March 2015      Revised:  24 June 2015      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
Corresponding Authors:  Ozkan Guner     E-mail:  ozkanguner@karatekin.edu.tr

Cite this article: 

Ozkan Guner Singular and non-topological soliton solutions for nonlinear fractional differential equations 2015 Chin. Phys. B 24 100201

[1] Podlubny I 1999 Fractional Differential Equations (California: Academic Press)
[2] Klafter J, Lim S C and Metzler R 2011 Fractional Dynamics in Physics: Recent Advances (Singapore: World Scientific)
[3] Tarasov V E 2011 Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (Berlin: Springer)
[4] Mainardi F 2010 Fractional Calculus and Waves in Linear Viscoelasticity (London: Imperial College Press)
[5] Zheng B 2012 Commun. Theor. Phys. 58 623
[6] Bekir A and Guner O 2013 Chin. Phys. B 22 110202
[7] Zayed E M E and Arnous A H 2014 European Journal of Academic Essays 1 6
[8] Taghizadeh N, Mirzazadeh, M and Farahrooz F 2013 J. Math. Anal. Appl. 374 549
[9] Bekir A, Guner O and Unsal O 2015 J. Comp. Nonlinear Dyn. 10 463
[10] Zayed E M E and Amer Y A 2014 Int. J. Phys. Sci. 9 174
[11] Zhang S and Zhang H Q 2011 Phys. Lett. A 375 1069
[12] Alzaidy J F 2013 British J. Math. & Comput. Sci. 3 153
[13] Tong B, He Y, Wei L and Zhang X 2012 Phys. Lett. A 376 2588
[14] Bekir A, Guner O and Cevikel A C 2013 Abstract and Applied Analysis 2013 426462
[15] Guner O and Cevikel A C 2014 The Scientific World Journal 2014 489495
[16] Guner O and Bekir A 2015 Int. J. Biomath. 8 1550003
[17] Liu W and Chen K 2013 Pramana J. Phys. 81 3
[18] Guner O and Eser D 2014 Adv. Math. Phys. 2014 456804
[19] Bulut H, Baskonus, H M, Pandir Y 2013 Abstract and Applied Analysis 2013 636802
[20] Ege S M and Misirli E 2014 Advances in Difference Equations 2014 135
[21] Inc M and Kilici B 2014 Waves in Random and Complex Media 24 393
[22] Mirzazadeh M 2015 Pramana J. Phys. 85 17
[23] Savescu M, Khan K R, Kohl R, Moraru L, Yildirim A and Biswas A 2013 J. Nanoelectron. Optoelectron. 8 208
[24] Kohl R, Biswas A, Milovic D and Zerrad E 2008 Opt. Laser Technol. 40 647
[25] Triki H and Biswas A 2011 Math. Methods Appl. Sci. 3 958
[26] Bekir A, Aksoy E and Guner O 2013 J. Nonlinear Opt. Phys. & Mater. 22 1350015
[27] M. Eslami and M. Mirzazadeh 2013 Eur. Phys. J. Plus 128 1
[28] Bekir A and Guner O 2013 Ocean Engineering 74 276
[29] Boubir B, Triki H and Wazwaz A M 2013 Appl. Math. Model. 37 420
[30] Bekir A, Aksoy E and Guner O 2012 Phys. Scr. 85 035009
[31] Triki H and Wazwaz A M 2011 Appl. Math. Comput. 217 8846
[32] Samko S G, Kilbas A A and Marichev O I 1993 Fractional Integrals and Derivatives: Theory and Applications (Switzerland: Gordon and Breach Science Publishers)
[33] Caputo M 1967 Geophys. J. Royal Astronom. Soc. 13 529
[34] Jumarie G 2006 Comput. Math. Appl. 51 1367
[35] Tarasov V E 2013 Commun. Nonlinear Sci. Numer. Simul. 18 2945
[36] Jumarie G 2009 Appl. Math. Lett. 22 378
[37] Hartley T and Lorenzo C F 2002 Nonlinear Dyn. 29 201
[38] Kilbas A A, Srivastava H M and Trujillo. J J 2006 Theory and Applications of Fractional Differential Equations (Amsterdam: Elsevier)
[39] He J H, Elegan S K and Li Z B 2012 Phys. Lett. A 376 257
[40] Saad M, Elagan S K, Hamed Y S and Sayed M 2013 Int. J. Basic & Appl. Sci. 13 23
[41] Elghareb T, Elagan S K, Hamed Y S and Sayed M 2013 Int. J. Basic & Appl. Sci. 13 19
[42] Jafari H, Tajadodi H, Baleanu D, Al-Zahrani A A, Alhamed Y A and Zahid A H 2013 Romanian Rep. Phys. 65 1119
[43] Triki H and Wazwaz A M 2009 Phys. Lett. A 373 2162
[44] Ebadi G and Biswas A 2011 Math. Comput. Model. 53 694
[45] Biswas A, Triki H and Labidi M 2011 Physics of Wave Phenomena 19 24
[46] Bekir A and Guner O 2013 Pramana J. Phys. 81 203
[47] Chowdhury A and Biswas A 2012 Math. Sci. 6 42
[48] Inc M, Ulutas E and Biswas A 2013 Chin. Phys. B 22 060204
[49] Song M, Liu Z, Zerrad Z and Biswas A 2013 Appl. Math. Inf. Sci. 7 1333
[50] Wen C and Zheng B 2013 Wseas Transactions on Mathematics 5 12
[51] Bekir A and Guner O 2014 Int. J. Nonlinear Sci. Numer. Simul. 15 463
[52] Zhang S 2007 Phys. Lett. A 368 470
[53] Peng Y Z and Krishnan E V 2005 Commun. Theor. Phys. 44 807
[54] Ren Y J, Liu S T and Zhang H Q 2006 Commun. Theor. Phys. 45 15
[55] Chen Y, Li B and Zhang H Q 2003 Commun. Theor. Phys. 40 137
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[3] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
[4] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[5] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
[6] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[7] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[8] Interference properties of two-component matter wave solitons
Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2020, 29(2): 020303.
[9] Dynamical interactions between higher-order rogue waves and various forms of n-soliton solutions (n → ∞) of the (2+1)-dimensional ANNV equation
Md Fazlul Hoque, Harun-Or-Roshid, and Fahad Sameer Alshammari. Chin. Phys. B, 2020, 29(11): 114701.
[10] Generation and manipulation of bright spatial bound-soliton pairs under the diffusion effect in photovoltaic photorefractive crystals
Ze-Xian Zhang(张泽贤), Xiao-Yang Zhao(赵晓阳), Ye Li(李烨), Hu Cui(崔虎)†, Zhi-Chao Luo(罗智超), Wen-Cheng Xu(徐文成), and Ai-Ping Luo(罗爱平). Chin. Phys. B, 2020, 29(10): 104208.
[11] Soliton guidance and nonlinear coupling for polarized vector spiraling elliptic Hermite-Gaussian beams in nonlocal nonlinear media
Chunzhi Sun(孙春志), Guo Liang(梁果). Chin. Phys. B, 2019, 28(7): 074206.
[12] Dynamics of three nonisospectral nonlinear Schrödinger equations
Abdselam Silem, Cheng Zhang(张成), Da-Jun Zhang(张大军). Chin. Phys. B, 2019, 28(2): 020202.
[13] Topologically protected edge gap solitons of interacting Bosons in one-dimensional superlattices
Xi-Hua Guo(郭西华), Tian-Fu Xu(徐天赋), Cheng-Shi Liu(刘承师). Chin. Phys. B, 2018, 27(6): 060307.
[14] Fundamental and dressed annular solitons in saturable nonlinearity with parity-time symmetric Bessel potential
Hong-Cheng Wang(王红成), Ya-Dong Wei(魏亚东), Xiao-Yuan Huang(黄晓园), Gui-Hua Chen(陈桂华), Hai Ye(叶海). Chin. Phys. B, 2018, 27(4): 044203.
[15] Soliton structures in the (1+1)-dimensional Ginzburg-Landau equation with a parity-time-symmetric potential in ultrafast optics
Wenyi Li(李文义), Guoli Ma(马国利), Weitian Yu(于维天), Yujia Zhang(张玉佳), Mengli Liu(刘孟丽), Chunyu Yang(杨春玉), Wenjun Liu(刘文军). Chin. Phys. B, 2018, 27(3): 030504.
No Suggested Reading articles found!