Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 114701    DOI: 10.1088/1674-1056/aba612
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dynamical interactions between higher-order rogue waves and various forms of n-soliton solutions (n → ∞) of the (2+1)-dimensional ANNV equation

Md Fazlul Hoque1, †, Harun-Or-Roshid1,, ‡, and Fahad Sameer Alshammari2
1 Department of Mathematics, Pabna University of Science and Technology, Pabna 6600, Bangladesh
2 Department of Mathematics, College of Science at Alkharj, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
Abstract  

We present new lemmas, theorem and corollaries to construct interactions among higher-order rogue waves, n-periodic waves and n-solitons solutions (n → ∞) to the (2+1)-dimensional asymmetric Nizhnik–Novikov–Veselov (ANNV) equation. Several examples for theories are given by choosing definite interactions of the wave solutions for the model. In particular, we exhibit dynamical interactions between a rogue and a cross bright-dark bell wave, a rogue and a cross-bright bell wave, a rogue and a one-, two-, three-, four-periodic wave. In addition, we also present multi-types interactions between a rogue and a periodic cross-bright bell wave, a rogue and a periodic cross-bright-bark bell wave. Finally, we physically explain such interaction solutions of the model in the 3D and density plots.

Keywords:  the (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov (ANNV) equation      higher-order rogue waves      n-solitons      periodic waves      bright-dark bell waves  
Received:  01 June 2020      Revised:  06 July 2020      Accepted manuscript online:  15 July 2020
Corresponding Authors:  Corresponding author. E-mail: fazlul_math@yahoo.co.in; f.alshammari@psau.edu.sa Corresponding author. E-mail: harunorroshidmd@gmail.com   

Cite this article: 

Md Fazlul Hoque, Harun-Or-Roshid, and Fahad Sameer Alshammari Dynamical interactions between higher-order rogue waves and various forms of n-soliton solutions (n → ∞) of the (2+1)-dimensional ANNV equation 2020 Chin. Phys. B 29 114701

Fig. 1.  

The 3D (upper) and density (lower) profiles of Eq. (8) for ${\mathscr{W}}$: interaction between (a) a rogue and a bright bell wave, (b) a rogue and a two-bell (one bright and one dark) wave, and (c) a rogue and a four-bell (double bright and double dark) wave.

Fig. 2.  

The 3D (upper) and density (lower) profiles of Eq. (8) for ${\mathscr{V}}$: interaction between (a) a rogue and a bright bell wave, (b) a rogue and a two-cross-bright-bell wave, and (c) a rogue and a four-cross-bright-bell wave.

Fig. 3.  

The 3D (upper) and density (lower) profiles of Eq. (17) for ${\mathscr{W}}$: (a) a single rogue wave; and interaction between (b) a rogue and a bright bell wave, and (c) a rogue and a three-bell (double bright and single dark) wave.

Fig. 4.  

The 3D (upper) and density (lower) profiles of Eq. (17) for ${\mathscr{V}}$: (a) a single rogue wave; and interaction between (b) a rogue and a cross-bright bell wave, and (c) a rogue and a triple cross-bright bell wave.

Fig. 5.  

The 3D (upper) and density (lower) profiles of Eq. (18) for ${\mathscr{W}}$: interaction between (a) a rogue and a periodic wave, (b) a rogue and a double periodic wave, and (c) a rogue and a triple periodic wave.

Fig. 6.  

The 3D (upper) and density (lower) profiles of Eq. (18) for ${\mathscr{V}}$: interaction between (a) a rogue and a periodic wave, (b) a rogue and a double periodic wave, and (c) a rogue and a triple periodic wave.

Fig. 7.  

The 3D (upper) and density (lower) profiles of Eq. (19) for ${\mathscr{W}}$: interaction between (a) a rogue and a periodic wave, (b) a rogue and a double periodic wave, and (c) a rogue and a four-periodic-bell wave.

Fig. 8.  

The 3D (upper) and density (lower) profiles of Eq. (19) for ${\mathscr{V}}$: interaction between (a) a rogue and a periodic wave, (b) a rogue and a double-periodic-bell wave, and (c) a rogue and a four-periodic-bell wave.

Fig. 9.  

The 3D (upper) and density (lower) profiles of Eq. (20) for ${\mathscr{W}}$: multi-interaction among a rogue periodic wave and bright-bark bell soliton waves.

Fig. 10.  

The 3D (upper) and density (lower) profiles of Eq. (20) for ${\mathscr{V}}$: multi-interaction among a rogue periodic wave and bright-bark bell soliton waves.

[1]
Ma H C Ni K Deng A 2017 Thermal Sci. 21 1765 DOI: 10.2298/TSCI160816066M
[2]
Wei H Tong Y Song X 2012 J. Zhoukou Normal Uni. 31 23
[3]
Tan W 2019 Phys. Lett. A 383 125907 DOI: 10.1016/j.physleta.2019.125907
[4]
Zaharov V E 1976 Dokl. Akad. Nauk SSSR 228 1314 DOI: http://mi.mathnet.ru/eng/dan/v228/i6/p1314
[5]
Manakov S V Zakharov V E Bordag L A 1977 Phys. Lett. A 63 2005 DOI: 10.1016/0375-9601(77)90875-1
[6]
Ablowitz M J Satsuma J 1978 J. Math. Phys. 19 2180 DOI: 10.1063/1.523550
[7]
Dai Z D Wang C J Liu J 2014 Pramana-J. Phys. 83 473 DOI: 10.1007/s12043-014-0811-9
[8]
Wang X Yang B Chen Y Yang Y 2014 Phys. Scr. 89 095210 DOI: 10.1088/0031-8949/89/9/095210
[9]
Garrett C Gemmrich J 2009 Phys. Today 62 62 DOI: 10.1063/1.3156339
[10]
Solli D R Ropers C Koonath P Jalali B 2007 Nature 450 1054 DOI: 10.1038/nature06402
[11]
Akhmediev N Dudley J M Solli D R Turitsyn S K 2013 J. Opt. 15 060201 DOI: 10.1088/2040-8978/15/6/060201
[12]
Osman M S Wazwaz A M 2018 Appl. Math. Comput. 321 282 DOI: 10.1016/j.amc.2017.10.042
[13]
Boiti M Leon J P Pempinelli F 1986 Inverse Problems 2 271 DOI: 10.1088/0266-5611/2/3/005
[14]
Ma W X 2015 Phys. Lett. A 379 1975 DOI: 10.1016/j.physleta.2015.06.061
[15]
Chen S J Yin Y H Ma W X Lu X 2019 Anal. Math. Phys. 9 2329 DOI: 10.1007/s13324-019-00338-2
[16]
Yang J Y Ma W X Khalique C M 2020 Eur. Phys. J. Plus 135 494 DOI: 10.1140/epjp/s13360-020-00463-z
[17]
Ma W X 2019 Mod. Phys. Lett. B 33 1950457 DOI: 10.1142/S0217984919504578
[18]
Ma W X Zhang L 2020 Pramana J. Phys. 94 0043 DOI: 10.1007/s12043-020-1918-9
[19]
Akhmediev N Ankiewicz A Taki M 2009 Phys. Lett. A 373 675 DOI: 10.1016/j.physleta.2008.12.036
[20]
Efimov B V Ganshin A N Kolmakov G V McClintock P V E Mezhov-Deglin L P 2010 Eur. Phys. J. Spec. Top. 185 181 DOI: 10.1140/epjst/e2010-01248-5
[21]
Moslem W M Shukla P K Eliasson B 2011 Eur. Phys. Lett. 96 25002 DOI: 10.1209/0295-5075/96/25002
[22]
Yan Z Y 2010 Commun. Theor. Phys. 54 947 DOI: 10.1088/0253-6102/54/5/31
[23]
Tan W Zhang W Zhang J 2020 Appl. Math. Lett. 101 106063 DOI: 10.1016/j.aml.2019.106063
[24]
Hossen M B Roshid H O Ali M Z 2018 Phys. Lett. A 382 1264 DOI: 10.1016/j.physleta.2018.03.016
[25]
Hirota R 2004 The Direct Method in Soliton Theory New York Cambridge University Press DOI: 10.1017/CBO9780511543043
[26]
Zhao Z L Chen Y Han B 2017 Mod. Phys. Lett. B 31 1750157 DOI: 10.1142/S0217984917501573
[27]
Hossen M B Roshid H O Ali M Z 2019 Heliyon 5 e02548 DOI: 10.1016/j.heliyon.2019.e02548
[28]
Liu Y Wen X Y 2019 Adv. Diff. Equ. 2019 332 DOI: 10.1186/s13662-019-2271-5
[29]
Ma W X Zhou Y 2018 J. Diff. Equ. 4 2633 DOI: 10.1016/j.jde.2017.10.033
[30]
Hoque M F Roshid H O 2020 Phys. Scr. 95 075219 DOI: 10.1088/1402-4896/ab97ce
[1] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[2] A nonlocal Burgers equation in atmospheric dynamical system and its exact solutions
Xi-Zhong Liu(刘希忠), Jun Yu(俞军), Zhi-Mei Lou(楼智美), Xian-Min Qian(钱贤民). Chin. Phys. B, 2019, 28(1): 010201.
No Suggested Reading articles found!