Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 030504    DOI: 10.1088/1674-1056/27/3/030504
GENERAL Prev   Next  

Soliton structures in the (1+1)-dimensional Ginzburg-Landau equation with a parity-time-symmetric potential in ultrafast optics

Wenyi Li(李文义)1,2, Guoli Ma(马国利)1,2, Weitian Yu(于维天)1, Yujia Zhang(张玉佳)1, Mengli Liu(刘孟丽)1,2, Chunyu Yang(杨春玉)1, Wenjun Liu(刘文军)1,2
1 State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  In this paper, the (1+1)-dimensional variable-coefficient complex Ginzburg-Landau (CGL) equation with a parity-time (PT) symmetric potential U(x) is investigated. Although the CGL equations with a PT-symmetric potential are less reported analytically, the analytic solutions for the CGL equation are obtained with the bilinear method in this paper. Via the derived solutions, some soliton structures are presented with corresponding parameters, and the influences of them are analyzed and studied. The single-soliton structure is numerically verified, and its stability is analyzed against additive and multiplicative noises. In particular, we study the soliton dynamics under the impact of the PT-symmetric potential. Results show that the PT-symmetric potential plays an important role for obtaining soliton structures in ultrafast optics, and we can design fiber lasers and all-optical switches depending on the different amplitudes of soliton-like structures.
Keywords:  solitons      parity-time symmetry      Ginzburg-Landau equation      bilinear method  
Received:  30 September 2017      Revised:  10 November 2017      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11674036), the Beijing Youth Top-notch Talent Support Program, China (Grant No. 2017000026833ZK08), and the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) (Grant Nos. IPOC2016ZT04 and IPOC2017ZZ05).
Corresponding Authors:  Wenjun Liu     E-mail:  wjliu@iphy.ac.cn

Cite this article: 

Wenyi Li(李文义), Guoli Ma(马国利), Weitian Yu(于维天), Yujia Zhang(张玉佳), Mengli Liu(刘孟丽), Chunyu Yang(杨春玉), Wenjun Liu(刘文军) Soliton structures in the (1+1)-dimensional Ginzburg-Landau equation with a parity-time-symmetric potential in ultrafast optics 2018 Chin. Phys. B 27 030504

[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett 80 5243
[2] Musslimani Z H 2008 Phys. Rev. Lett. 100 030402
[3] Yan Z Y, Xiong B and Liu W M 2010 arXiv:1009.4023
[4] Yan Z Y 2013 Philos. Trans. R. Soc. A 371 20120059
[5] Yan Z Y, Wen Z C and Konotop V V 2015 Phys. Rev. A 92 023821
[6] Guo A, Salamo G J, Volatier-Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902
[7] Luo X, Huang J, Zhong H, Qin X, Xie Q, Kivshar Y S and Lee C 2013 Phys. Rev. Lett. 110 243902
[8] Yan Z Y, Wen Z C and Hang C 2015 Phys. Rev. E 92 022913
[9] Xu Y J and Dai C Q 2014 Opt. Commun. 318 112
[10] Chen S and Dudley J 2009 Phys. Rev. Lett 102 233903
[11] Chen L, Li R, Yang N, Chen D and Li L 2012 Proc. Rom. Acad. 13 46
[12] Burlak G and Malomed B 2013 Phys. Rev. E 88 062904
[13] Barashenkov I V 2014 Phys. Rev. A 90 045802
[14] Yan Z Y, Chen Y and Wen Z C 2016 Chaos 26 083109
[15] Chen Y and Yan Z Y 2017 Phys. Rev. E 95 012205
[16] Wen Z C and Yan Z Y 2017 Chaos 27 053105
[17] Yan Z Y and Chen Y 2017 Chaos 27 073114
[18] Kartashov Y V, Malomed B A and Torner L 2011 Rev. Mod. Phys. 83 247
[19] Dai C Q, Chen R P, Wang Y Y and Fan Y 2017 Nonlinear Dyn. 87 1675
[20] Driben R and Malomed B A 2011 Opt. Lett. 36 4323
[21] Chen Y and Yan Z Y 2016 Sci. Rep. 6 23478
[22] Chen Y, Yan Z Y, Mihalache D and Malomed B A 2017 Sci. Rep. 7 1257
[23] Yang J 2014 Opt. Lett. 39 5547
[24] Lou C B, Song D H, Tang L Q, Chen X Y, Xu J J and Chen Z G 2008 Physics 37 239
[25] Zhu X, Wang H, Zheng L X, Li H and He Y J 2011 Opt. Lett. 36 2680
[26] Liu S, Ma C, Zhang Y and Lu K 2012 Opt. Commun. 285 1934
[27] Abdullaev F K, Kartashov Y V, Konotop V V and Zezyulin D A 2011 Phys. Rev. A 83 041805
[28] Zhou Z, Zhong H H, Zhu B, Xiao F X, Zhu K and Tan J T 2016 Chin. Phys. Lett. 33 1
[29] Li C, Liu H and Dong L 2012 Opt. Express 20 16823
[30] Zezyulin D A and Konotop V V 2012 Phys. Rev. Lett. 108 213906
[31] Driben R and Malomed B A 2011 EPL 96 51001
[32] Liu W J, Liu M L, Lei M, Fang S B and Wei Z Y 2018 IEEE J. Sel. Top. Quant. 24 0901005
[33] Liu Y K and Li B 2017 Chin. Phys. Lett. 34 010202
[34] Hua W, Liu X S and Liu S X 2016 Chin. Phys. B 25 050202
[35] Liu W J, Yu W T, Yang C Y, Liu M L, Zhang Y J and Lei M 2017 Nonlinear Dyn. 89 2933
[36] Wang L, Zhang J H, Wang Z Q, Liu C, Li M, Qi F H and Guo R 2016 Phys. Rev. E 93 012214
[37] Liu W J, Pang L H, Yan H, Ma G L, Lei M and Wei Z Y 2016 EPL 116 64002
[38] Jia R X, Yan H L, Liu W J and Lei M 2014 Chin. Phys. B 23 0100502
[39] Liu W J, Yang C Y, Liu M L, Yu W T, Zhang Y J, Lei M and Wei Z Y 2017 EPL 118 34004
[40] Li Z D, Wu X, Li Q Y and He P B 2016 Chin. Phys. B 25 010507
[41] Zheng Y, Tain J R, Dong Z K, Xu R Q, Li K X and Song Y R 2017 Chin. Phys. B 26 074212
[42] Liu W J, Pang L H, Han H H, Bi K, Lei M and Wei Z Y 2017 Nanoscale 9 5806
[43] Duan L N, Wen J, Fan W and Wang W 2017 Chin. Phys. B 26 0104205
[44] Liu W J, Pang L H, Han H H, Liu M L, Lei M, Fang S B, Teng H and Wei Z Y 2017 Opt. Express 25 2950
[45] Gao J H, Xie W M, Gao J Z, Yang H P and Ge Z C 2012 Acta Phys. Sin. 61 130506
[46] Renninger W, Chong A and Wise F 2008 Phys. Rev. A 77 023814
[47] Mihalache D, Mazilu D, Lederer F, Kartashov Y, Crasovan L C, Torner L and Malomed B 2006 Phys. Rev. Lett. 97 073904
[48] Grelu P and Akhmediev N 2012 Nat. Photon. 6 84
[49] He Y and Mihalache D 2013 Phys. Rev. A 87 013812
[50] Feng L, Wong Z J, Ma R M, Wang Y and Zhang X 2014 Science 346 972
[51] Hodaei H, Miri M A, Heinrich M, Christodoulides D N and Kha-javikhan M 2014 Science 346 975
[52] Liang Y and Alam M R 2013 Phys. Rev. E 88 035201
[53] Gao X, Huang S, Song Y, Li S, Wei Y, Zhou J, Zheng X, Zhang H and Gu W 2014 Opt. Lett. 39 2652
[54] Fu B, Gui L, Zhang W, Xiao X, Zhu H and Yang C 2013 Opt. Commun. 286 304
[55] Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901
[56] Makris K G, Ganainy R E and Christodoulides D N 2008 Phys. Rev. Lett. 100 103904
[57] He Y, Malomed B A and Mihalache D 2014 Philos. Trans. R. Soc. A. 372 20140017
[58] He Y and Mihalache D 2013 Phys. Rev. A 87 013812
[59] Yang J 2014 Opt. Lett. 39 5547
[60] Liu W J, Huang L G, Huang P, Li Y Q and Lei M 2016 Appl. Math. Lett. 61 80
[61] Yan Z Y 2010 Phys. Lett. A 374 4838
[62] Izdebskaya Y, Rebling J, Desyatnikov A, Assanto G and Kivshar Y 2012 Opt. Lett. 37 767
[63] Hossein H, Mohammad M A, Matthias H, Christodoulides D N and Mercedeh K 2014 Science 346 975
[64] Yin C, He Y, Li H and Xie J 2012 Opt. Express 20 19355
[65] Agrawal G 2009 Nonlinear Fiber Optics, 4th edn.
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[3] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[4] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[5] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[6] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
[7] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[8] Two-body exceptional points in open dissipative systems
Peize Ding(丁霈泽) and Wei Yi(易为). Chin. Phys. B, 2022, 31(1): 010309.
[9] Disorder in parity-time symmetric quantum walks
Peng Xue(薛鹏). Chin. Phys. B, 2022, 31(1): 010311.
[10] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[11] Dynamics of high-frequency modulated waves in a nonlinear dissipative continuous bi-inductance network
S M Ngounou and F B Pelap. Chin. Phys. B, 2021, 30(6): 060504.
[12] General M-lumps, T-breathers, and hybrid solutions to (2+1)-dimensional generalized KDKK equation
Peisen Yuan(袁培森), Jiaxin Qi(齐家馨), Ziliang Li(李子良), and Hongli An(安红利). Chin. Phys. B, 2021, 30(4): 040503.
[13] Deformed two-dimensional rogue waves in the (2+1)-dimensional Korteweg-de Vries equation
Yulei Cao(曹玉雷), Peng-Yan Hu(胡鹏彦), Yi Cheng(程艺), and Jingsong He(贺劲松). Chin. Phys. B, 2021, 30(3): 030503.
[14] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[15] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
No Suggested Reading articles found!