|
|
Soliton structures in the (1+1)-dimensional Ginzburg-Landau equation with a parity-time-symmetric potential in ultrafast optics |
Wenyi Li(李文义)1,2, Guoli Ma(马国利)1,2, Weitian Yu(于维天)1, Yujia Zhang(张玉佳)1, Mengli Liu(刘孟丽)1,2, Chunyu Yang(杨春玉)1, Wenjun Liu(刘文军)1,2 |
1 State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract In this paper, the (1+1)-dimensional variable-coefficient complex Ginzburg-Landau (CGL) equation with a parity-time (PT) symmetric potential U(x) is investigated. Although the CGL equations with a PT-symmetric potential are less reported analytically, the analytic solutions for the CGL equation are obtained with the bilinear method in this paper. Via the derived solutions, some soliton structures are presented with corresponding parameters, and the influences of them are analyzed and studied. The single-soliton structure is numerically verified, and its stability is analyzed against additive and multiplicative noises. In particular, we study the soliton dynamics under the impact of the PT-symmetric potential. Results show that the PT-symmetric potential plays an important role for obtaining soliton structures in ultrafast optics, and we can design fiber lasers and all-optical switches depending on the different amplitudes of soliton-like structures.
|
Received: 30 September 2017
Revised: 10 November 2017
Accepted manuscript online:
|
PACS:
|
05.45.Yv
|
(Solitons)
|
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11674036), the Beijing Youth Top-notch Talent Support Program, China (Grant No. 2017000026833ZK08), and the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) (Grant Nos. IPOC2016ZT04 and IPOC2017ZZ05). |
Corresponding Authors:
Wenjun Liu
E-mail: wjliu@iphy.ac.cn
|
Cite this article:
Wenyi Li(李文义), Guoli Ma(马国利), Weitian Yu(于维天), Yujia Zhang(张玉佳), Mengli Liu(刘孟丽), Chunyu Yang(杨春玉), Wenjun Liu(刘文军) Soliton structures in the (1+1)-dimensional Ginzburg-Landau equation with a parity-time-symmetric potential in ultrafast optics 2018 Chin. Phys. B 27 030504
|
[1] |
Bender C M and Boettcher S 1998 Phys. Rev. Lett 80 5243
|
[2] |
Musslimani Z H 2008 Phys. Rev. Lett. 100 030402
|
[3] |
Yan Z Y, Xiong B and Liu W M 2010 arXiv:1009.4023
|
[4] |
Yan Z Y 2013 Philos. Trans. R. Soc. A 371 20120059
|
[5] |
Yan Z Y, Wen Z C and Konotop V V 2015 Phys. Rev. A 92 023821
|
[6] |
Guo A, Salamo G J, Volatier-Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902
|
[7] |
Luo X, Huang J, Zhong H, Qin X, Xie Q, Kivshar Y S and Lee C 2013 Phys. Rev. Lett. 110 243902
|
[8] |
Yan Z Y, Wen Z C and Hang C 2015 Phys. Rev. E 92 022913
|
[9] |
Xu Y J and Dai C Q 2014 Opt. Commun. 318 112
|
[10] |
Chen S and Dudley J 2009 Phys. Rev. Lett 102 233903
|
[11] |
Chen L, Li R, Yang N, Chen D and Li L 2012 Proc. Rom. Acad. 13 46
|
[12] |
Burlak G and Malomed B 2013 Phys. Rev. E 88 062904
|
[13] |
Barashenkov I V 2014 Phys. Rev. A 90 045802
|
[14] |
Yan Z Y, Chen Y and Wen Z C 2016 Chaos 26 083109
|
[15] |
Chen Y and Yan Z Y 2017 Phys. Rev. E 95 012205
|
[16] |
Wen Z C and Yan Z Y 2017 Chaos 27 053105
|
[17] |
Yan Z Y and Chen Y 2017 Chaos 27 073114
|
[18] |
Kartashov Y V, Malomed B A and Torner L 2011 Rev. Mod. Phys. 83 247
|
[19] |
Dai C Q, Chen R P, Wang Y Y and Fan Y 2017 Nonlinear Dyn. 87 1675
|
[20] |
Driben R and Malomed B A 2011 Opt. Lett. 36 4323
|
[21] |
Chen Y and Yan Z Y 2016 Sci. Rep. 6 23478
|
[22] |
Chen Y, Yan Z Y, Mihalache D and Malomed B A 2017 Sci. Rep. 7 1257
|
[23] |
Yang J 2014 Opt. Lett. 39 5547
|
[24] |
Lou C B, Song D H, Tang L Q, Chen X Y, Xu J J and Chen Z G 2008 Physics 37 239
|
[25] |
Zhu X, Wang H, Zheng L X, Li H and He Y J 2011 Opt. Lett. 36 2680
|
[26] |
Liu S, Ma C, Zhang Y and Lu K 2012 Opt. Commun. 285 1934
|
[27] |
Abdullaev F K, Kartashov Y V, Konotop V V and Zezyulin D A 2011 Phys. Rev. A 83 041805
|
[28] |
Zhou Z, Zhong H H, Zhu B, Xiao F X, Zhu K and Tan J T 2016 Chin. Phys. Lett. 33 1
|
[29] |
Li C, Liu H and Dong L 2012 Opt. Express 20 16823
|
[30] |
Zezyulin D A and Konotop V V 2012 Phys. Rev. Lett. 108 213906
|
[31] |
Driben R and Malomed B A 2011 EPL 96 51001
|
[32] |
Liu W J, Liu M L, Lei M, Fang S B and Wei Z Y 2018 IEEE J. Sel. Top. Quant. 24 0901005
|
[33] |
Liu Y K and Li B 2017 Chin. Phys. Lett. 34 010202
|
[34] |
Hua W, Liu X S and Liu S X 2016 Chin. Phys. B 25 050202
|
[35] |
Liu W J, Yu W T, Yang C Y, Liu M L, Zhang Y J and Lei M 2017 Nonlinear Dyn. 89 2933
|
[36] |
Wang L, Zhang J H, Wang Z Q, Liu C, Li M, Qi F H and Guo R 2016 Phys. Rev. E 93 012214
|
[37] |
Liu W J, Pang L H, Yan H, Ma G L, Lei M and Wei Z Y 2016 EPL 116 64002
|
[38] |
Jia R X, Yan H L, Liu W J and Lei M 2014 Chin. Phys. B 23 0100502
|
[39] |
Liu W J, Yang C Y, Liu M L, Yu W T, Zhang Y J, Lei M and Wei Z Y 2017 EPL 118 34004
|
[40] |
Li Z D, Wu X, Li Q Y and He P B 2016 Chin. Phys. B 25 010507
|
[41] |
Zheng Y, Tain J R, Dong Z K, Xu R Q, Li K X and Song Y R 2017 Chin. Phys. B 26 074212
|
[42] |
Liu W J, Pang L H, Han H H, Bi K, Lei M and Wei Z Y 2017 Nanoscale 9 5806
|
[43] |
Duan L N, Wen J, Fan W and Wang W 2017 Chin. Phys. B 26 0104205
|
[44] |
Liu W J, Pang L H, Han H H, Liu M L, Lei M, Fang S B, Teng H and Wei Z Y 2017 Opt. Express 25 2950
|
[45] |
Gao J H, Xie W M, Gao J Z, Yang H P and Ge Z C 2012 Acta Phys. Sin. 61 130506
|
[46] |
Renninger W, Chong A and Wise F 2008 Phys. Rev. A 77 023814
|
[47] |
Mihalache D, Mazilu D, Lederer F, Kartashov Y, Crasovan L C, Torner L and Malomed B 2006 Phys. Rev. Lett. 97 073904
|
[48] |
Grelu P and Akhmediev N 2012 Nat. Photon. 6 84
|
[49] |
He Y and Mihalache D 2013 Phys. Rev. A 87 013812
|
[50] |
Feng L, Wong Z J, Ma R M, Wang Y and Zhang X 2014 Science 346 972
|
[51] |
Hodaei H, Miri M A, Heinrich M, Christodoulides D N and Kha-javikhan M 2014 Science 346 975
|
[52] |
Liang Y and Alam M R 2013 Phys. Rev. E 88 035201
|
[53] |
Gao X, Huang S, Song Y, Li S, Wei Y, Zhou J, Zheng X, Zhang H and Gu W 2014 Opt. Lett. 39 2652
|
[54] |
Fu B, Gui L, Zhang W, Xiao X, Zhu H and Yang C 2013 Opt. Commun. 286 304
|
[55] |
Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901
|
[56] |
Makris K G, Ganainy R E and Christodoulides D N 2008 Phys. Rev. Lett. 100 103904
|
[57] |
He Y, Malomed B A and Mihalache D 2014 Philos. Trans. R. Soc. A. 372 20140017
|
[58] |
He Y and Mihalache D 2013 Phys. Rev. A 87 013812
|
[59] |
Yang J 2014 Opt. Lett. 39 5547
|
[60] |
Liu W J, Huang L G, Huang P, Li Y Q and Lei M 2016 Appl. Math. Lett. 61 80
|
[61] |
Yan Z Y 2010 Phys. Lett. A 374 4838
|
[62] |
Izdebskaya Y, Rebling J, Desyatnikov A, Assanto G and Kivshar Y 2012 Opt. Lett. 37 767
|
[63] |
Hossein H, Mohammad M A, Matthias H, Christodoulides D N and Mercedeh K 2014 Science 346 975
|
[64] |
Yin C, He Y, Li H and Xie J 2012 Opt. Express 20 19355
|
[65] |
Agrawal G 2009 Nonlinear Fiber Optics, 4th edn.
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|