Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 074206    DOI: 10.1088/1674-1056/28/7/074206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Soliton guidance and nonlinear coupling for polarized vector spiraling elliptic Hermite-Gaussian beams in nonlocal nonlinear media

Chunzhi Sun(孙春志), Guo Liang(梁果)
School of Electrical and Electronic Engineering, Shangqiu Normal University, Shangqiu 476000, China
Abstract  

We investigate the incoherent beams with two orthogonal polarizations in nonlocal nonlinear media, one of which is a fundamental Gaussian beam and the other is spiraling elliptic Hermite-Gaussian beam carrying the orbital angular momentum (OAM). Using the variational approach, we obtain the critical power and the critical OAM required for the vector spiraling elliptic Hermite-Gaussian solitons. In the strong nonlocality region, two components of the vector beam contribute to the nonlinear refractive index in a linear manner by the sum of their respective power. The nonlinear refractive index exhibits a circularly symmetrical profile in despite of the elliptic shapes for spiraling Hermite-Gaussian beams. We find that in the strong nonlocality region, the critical power and the rotational velocity are the same regardless of the relative ratio of the constituent powers. The nonlinear refractive index loses its circular symmetry in weak nonlocality region, and the nonlinear coupling effect is observed. Due to the radiation of the OAM, the damping of the rotation is predicted, and can be suppressed by decreasing the proportion of the spiraling elliptic component of the vector beam.

Keywords:  vector solitons      Hermite-Gaussian beams      orbital angular momentum      variational approach  
Received:  04 February 2019      Revised:  15 April 2019      Accepted manuscript online: 
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.65.Jx (Beam trapping, self-focusing and defocusing; self-phase modulation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11604199) and the China Scholarship Council (Grant No. 201708410236).

Corresponding Authors:  Guo Liang     E-mail:  liangguo0916@163.com

Cite this article: 

Chunzhi Sun(孙春志), Guo Liang(梁果) Soliton guidance and nonlinear coupling for polarized vector spiraling elliptic Hermite-Gaussian beams in nonlocal nonlinear media 2019 Chin. Phys. B 28 074206

[1] Snyder A W and Mitchell D J 1997 Science 276 1538
[2] Krolikowski W and Bang O 2000 Phys. Rev. E 63 016610
[3] Bang O, Krolikowski W, Wyller J and Rasmussen J J 2002 Phys. Rev. E 66 046619
[4] Guo Q, Lu D and Deng D 2015 Advances in Nonlinear Optics (Chen X, Guo Q, She W, Zeng H and Zhang G, Eds.) (Berlin: De Gruyter) pp. 277-306
[5] Bian L and Tang B 2018 J. Opt. Soc. Am. B 35 1362
[6] Bian L and Tang B 2018 Appl. Opt. 57 4735
[7] Wang Y, Dai C, Zhou G, Fan Y and Chen L 2017 Nonlinear Dyn. 87 67
[8] Dai C, Chen R, Wang Y and Fan Y 2017 Nonlinear Dyn. 87 1675
[9] Cai S, Mei L, Peng H, Lu D and Hu Wei 2012 Acta Phys. Sin. 61 154211 (in Chinese)
[10] Wang H, Ling D and He Y 2015 Chin. Phys. Lett. 32 074203
[11] Li Z, Huo C, Li Y, He P and Xu T 2018 Chin. Phys. B 27 040505
[12] Peccianti M, Brzdakiewicz K A and Assanto G 2002 Opt. Lett. 27 1460
[13] Peccianti M, Conti C, Assanto G, Luca A D and Umeton C 2002 Appl. Phys. Lett. 81 3335
[14] Buccoliero D, Desyatnikov A S, Krolikowski W and Kivshar Y S 2007 Phys. Rev. Lett. 98 053901
[15] Deng D, Zhao X, Guo Q and Lan S 2007 J. Opt. Soc. Am. B 24 2537
[16] Deng D and Guo Q 2007 Opt. Lett. 32 3206
[17] Lopez-Aguayo S, Desyatnikov A S, Kivshar Y S, Skupin S, Krolikowski W and Bang O 2006 Opt. Lett. 31 1100
[18] Liang G and Quo Q 2013 Phys. Rev. A 88 043825
[19] Liang G, Cheng W, Dai Z, Jia T, Wang M and Li H 2017 Opt. Express 25 11717
[20] Liang G and Dai Z 2017 Sci. Rep. 7 3234
[21] Kivshar Y S and Agrawal G 2003 Optical Solitons: From Fibers to Photonic Crystals (San Diego: Academic Press)
[22] Dai C, Zhou G, Chen R, Lai X and Zheng J 2017 Nonlinear Dyn. 88 2629
[23] Kartashov Y V, Torner L, Vysloukh V A and Mihalache D 2006 Opt. Lett. 31 1483
[24] Lin Y and Lee R K 2007 Opt. Express 15 8781
[25] Shen M, Kong Q, Shi J and Wang Q 2008 Phys. Rev. A 77 015811
[26] Liang G and Li H 2015 Opt. Commun. 352 39
[27] Villeneuve A, Kang J U and Stegeman G I 1995 Appl. Phys. Lett. 67 760
[28] Sheppard A P and Kivshar Y S 1997 Phys. Rev. E 55 4773
[29] Wyller J, Krolikowski W, Bang O and Rasmussen J J 2002 Phys. Rev. E. 66 066615
[30] Anderson D 1983 Phys. Rev. A 27 3135
[31] Guo Q, Luo B and Chi S 2006 Opt. Commun. 259 336
[32] Desyatnikov A S, Buccoliero D, Dennis M R and Kivshar Y S 2010 Phys. Rev. Lett. 104 053902
[1] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[2] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[3] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[4] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[5] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[6] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[7] Coherent interaction and action-counteraction theory in small polaron systems, and ground state properties
Zhi-Hua Luo(罗质华) and Chao-Fan Yu(余超凡). Chin. Phys. B, 2022, 31(11): 117104.
[8] Shared aperture metasurface antenna for electromagnetic vortices generation with different topological charges
He Wang(王贺), Yong-Feng Li(李勇峰), and Shao-Bo Qu(屈绍波). Chin. Phys. B, 2021, 30(8): 084101.
[9] Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces
Yunping Qi(祁云平) Baohe Zhang(张宝和), Jinghui Ding(丁京徽), Ting Zhang(张婷), Xiangxian Wang(王向贤), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024211.
[10] Generation of a large orbital angular momentum beam via an optical fiber winding around a curved path and its application
Wei-Han Tan(谭维翰), Chao-Ying Zhao(赵超樱), Yi-Chao Meng(孟义朝), and Qi-Zhi Guo(郭奇志). Chin. Phys. B, 2021, 30(10): 104208.
[11] Collapse arrest in the space-fractional Schrödinger equation with an optical lattice
Manna Chen(陈曼娜), Hongcheng Wang(王红成), Hai Ye(叶海), Xiaoyuan Huang(黄晓园), Ye Liu(刘晔), Sumei Hu(胡素梅), and Wei Hu(胡巍). Chin. Phys. B, 2021, 30(10): 104206.
[12] Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient
Lei Han(韩磊), Shuxia Qi(齐淑霞), Sheng Liu(刘圣), Peng Li(李鹏), Huachao Cheng(程华超), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(9): 094203.
[13] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[14] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[15] Optical spin-to-orbital angular momentum conversion instructured optical fields
Yang Zhao(赵阳), Cheng-Xi Yang(阳成熙), Jia-Xi Zhu(朱家玺), Feng Lin(林峰), Zhe-Yu Fang(方哲宇), Xing Zhu(朱星). Chin. Phys. B, 2020, 29(6): 067301.
No Suggested Reading articles found!