Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 044203    DOI: 10.1088/1674-1056/27/4/044203

Fundamental and dressed annular solitons in saturable nonlinearity with parity-time symmetric Bessel potential

Hong-Cheng Wang(王红成), Ya-Dong Wei(魏亚东), Xiao-Yuan Huang(黄晓园), Gui-Hua Chen(陈桂华), Hai Ye(叶海)
School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China
Abstract  We theoretically study the existence and stability of optical solitons in saturable nonlinearity with a two-dimensional parity-time (PT) symmetric Bessel potential. Besides the fundamental solitons, a novel type of dressed soliton, whose intensity looks like a ring dressed on an intensity hump, are presented. It is found that both the fundamental solitons and dressed solitons can exist when the propagation constant is beyond a certain critical value. The propagation stability is investigated with a linear stability analysis corroborated by a beam propagation method. All the fundamental solitons are stable, while dressed solitons are unstable for low values of saturable parameter. As the value of saturable parameter increases, the dressed solitons tend to be stable at high powers.
Keywords:  optical solitons      parity-time symmetry      optical lattice      linear stability  
Received:  07 September 2017      Revised:  18 December 2017      Accepted manuscript online: 
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.65.Jx (Beam trapping, self-focusing and defocusing; self-phase modulation)  
  42.65.Wi (Nonlinear waveguides)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61308019), the Guangdong Provincial Natural Science Foundation, China (Grant Nos. 2015A030313650 and 2014A030310262), and the Guangdong Provincial Science and Technology Planning Program, China (Grant No. 2017A010102019).
Corresponding Authors:  Hong-Cheng Wang     E-mail:

Cite this article: 

Hong-Cheng Wang(王红成), Ya-Dong Wei(魏亚东), Xiao-Yuan Huang(黄晓园), Gui-Hua Chen(陈桂华), Hai Ye(叶海) Fundamental and dressed annular solitons in saturable nonlinearity with parity-time symmetric Bessel potential 2018 Chin. Phys. B 27 044203

[1] Stegeman G I and Segev M 1999 Science 286 1518
[2] Chen Z, Segev M and Christodoulides D N 2012 Rep. Prog. Phys. 75 086401
[3] Gan X, Zhang P, Liu S, Xiao F and Zhao J 2014 Phys. Rev. A 89 013844
[4] Kartashov Y V, Vysloukh V A and Torner L 2009 Prog. Opt. 52 63
[5] Wang H and Peng X 2012 J. Opt. Soc. Am. B 29 429
[6] Christodoulides D N, Lederer F and Silberberg Y 2003 Nature 424 817
[7] Kartashov Y V, Vysloukh V A and Torner L 2005 Phys. Rev. Lett. 94 043902
[8] Zheng J and Dong L 2011 J. Opt. Soc. Am. B 28 780
[9] Mihalache D, Mazilu D, Lederer F, Malomed B A, Kartashov Y V, Crasovan L C and Torner L 2005 Phys. Rev. Lett. 95 023902
[10] Dong L, Wang H, Zhou W, Yang X, Lv X and Chen H 2008 Opt. Express 16 5649
[11] Kartashov Y V, Egorov A A, Vysloukh V A and Torner L 2004 J. Opt. B:Quantum. Semiclass Opt. 6 444
[12] Wang X, Chen Z and Kevrekidis P G 2006 Phys. Rev. Lett. 96 083904
[13] Konotop V V, Yang J and Zezyulin D A 2016 Rev. Mod. Phys. 88 035002
[14] Suchkov S V, Sukhorukov A A, Huang J, Dmitriev S V, Lee C and Kivshar Y S 2016 Laser Photon. Rev. 10 177
[15] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[16] Musslimani Z H, Makris K G, El-Ganainy R and Christodoulides D N 2008 Phys. Rev. Lett. 100 030402
[17] Ruter C, Makris K, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192
[18] Shi Z, Jiang X, Zhu X and Li H 2011 Phys. Rev. A 84 053855
[19] Li C, Huang C, Liu H and Dong L 2012 Opt. Lett. 37 4543
[20] Hu S, Ma X, Lu D, Yang Z, Zheng Y and Hu W 2011 Phys. Rev. A 84 043818
[21] Chen H, Hu S and Qi L 2014 Opt. Commun. 331 139
[22] Wang H, Ling D, Zhang S, Zhu X and He Y 2014 Chin. Phys. B 23 064208
[23] Wang H and Christodoulides D N 2016 Commun. Nonlinear. Sci. Num. Simul. 38 130
[24] Hu S and Hu W 2012 J. Phys. B:At. Mol. Opt. Phys. 45 225401
[25] Chen H and Hu S 2014 Opt. Commun. 332 169
[26] Wang H, Ling D, Chen G, Zhu X and He Y 2015 Eur. Phys. J. D 69 31
[27] Chen H and Hu S 2015 Opt. Commun. 355 50
[28] Kartashov Y V, Konotop V V and Torner L 2015 Phys. Rev. Lett. 115 193902
[29] Huang C M and Dong L W 2016 Opt. Lett. 41 5194
[30] Zhong W P, Beli M and Zhang Y 2017 Ann. Phys. 378 432
[31] Hang C, Huang G and Konotop V V 2013 Phys. Rev. Lett. 110 083604
[32] Arlt J and Dholakia K 2000 Opt. Commun. 177 297
[33] Chattrapiban N, Rogers E A, Cofield D, Hill W T and Roy R 2003 Opt. Lett. 28 2183
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[3] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[4] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[5] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[6] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[7] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[8] Theoretical calculation of the quadratic Zeeman shift coefficient of the 3P0o clock state for strontium optical lattice clock
Benquan Lu(卢本全), Xiaotong Lu(卢晓同), Jiguang Li(李冀光), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(4): 043101.
[9] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[10] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[11] Two-body exceptional points in open dissipative systems
Peize Ding(丁霈泽) and Wei Yi(易为). Chin. Phys. B, 2022, 31(1): 010309.
[12] Disorder in parity-time symmetric quantum walks
Peng Xue(薛鹏). Chin. Phys. B, 2022, 31(1): 010311.
[13] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[14] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[15] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
No Suggested Reading articles found!