ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Fundamental and dressed annular solitons in saturable nonlinearity with parity-time symmetric Bessel potential |
Hong-Cheng Wang(王红成), Ya-Dong Wei(魏亚东), Xiao-Yuan Huang(黄晓园), Gui-Hua Chen(陈桂华), Hai Ye(叶海) |
School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China |
|
|
Abstract We theoretically study the existence and stability of optical solitons in saturable nonlinearity with a two-dimensional parity-time (PT) symmetric Bessel potential. Besides the fundamental solitons, a novel type of dressed soliton, whose intensity looks like a ring dressed on an intensity hump, are presented. It is found that both the fundamental solitons and dressed solitons can exist when the propagation constant is beyond a certain critical value. The propagation stability is investigated with a linear stability analysis corroborated by a beam propagation method. All the fundamental solitons are stable, while dressed solitons are unstable for low values of saturable parameter. As the value of saturable parameter increases, the dressed solitons tend to be stable at high powers.
|
Received: 07 September 2017
Revised: 18 December 2017
Accepted manuscript online:
|
PACS:
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
42.65.Jx
|
(Beam trapping, self-focusing and defocusing; self-phase modulation)
|
|
42.65.Wi
|
(Nonlinear waveguides)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61308019), the Guangdong Provincial Natural Science Foundation, China (Grant Nos. 2015A030313650 and 2014A030310262), and the Guangdong Provincial Science and Technology Planning Program, China (Grant No. 2017A010102019). |
Corresponding Authors:
Hong-Cheng Wang
E-mail: wanghc@dgut.edu.cn
|
Cite this article:
Hong-Cheng Wang(王红成), Ya-Dong Wei(魏亚东), Xiao-Yuan Huang(黄晓园), Gui-Hua Chen(陈桂华), Hai Ye(叶海) Fundamental and dressed annular solitons in saturable nonlinearity with parity-time symmetric Bessel potential 2018 Chin. Phys. B 27 044203
|
[1] |
Stegeman G I and Segev M 1999 Science 286 1518
|
[2] |
Chen Z, Segev M and Christodoulides D N 2012 Rep. Prog. Phys. 75 086401
|
[3] |
Gan X, Zhang P, Liu S, Xiao F and Zhao J 2014 Phys. Rev. A 89 013844
|
[4] |
Kartashov Y V, Vysloukh V A and Torner L 2009 Prog. Opt. 52 63
|
[5] |
Wang H and Peng X 2012 J. Opt. Soc. Am. B 29 429
|
[6] |
Christodoulides D N, Lederer F and Silberberg Y 2003 Nature 424 817
|
[7] |
Kartashov Y V, Vysloukh V A and Torner L 2005 Phys. Rev. Lett. 94 043902
|
[8] |
Zheng J and Dong L 2011 J. Opt. Soc. Am. B 28 780
|
[9] |
Mihalache D, Mazilu D, Lederer F, Malomed B A, Kartashov Y V, Crasovan L C and Torner L 2005 Phys. Rev. Lett. 95 023902
|
[10] |
Dong L, Wang H, Zhou W, Yang X, Lv X and Chen H 2008 Opt. Express 16 5649
|
[11] |
Kartashov Y V, Egorov A A, Vysloukh V A and Torner L 2004 J. Opt. B:Quantum. Semiclass Opt. 6 444
|
[12] |
Wang X, Chen Z and Kevrekidis P G 2006 Phys. Rev. Lett. 96 083904
|
[13] |
Konotop V V, Yang J and Zezyulin D A 2016 Rev. Mod. Phys. 88 035002
|
[14] |
Suchkov S V, Sukhorukov A A, Huang J, Dmitriev S V, Lee C and Kivshar Y S 2016 Laser Photon. Rev. 10 177
|
[15] |
Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
|
[16] |
Musslimani Z H, Makris K G, El-Ganainy R and Christodoulides D N 2008 Phys. Rev. Lett. 100 030402
|
[17] |
Ruter C, Makris K, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192
|
[18] |
Shi Z, Jiang X, Zhu X and Li H 2011 Phys. Rev. A 84 053855
|
[19] |
Li C, Huang C, Liu H and Dong L 2012 Opt. Lett. 37 4543
|
[20] |
Hu S, Ma X, Lu D, Yang Z, Zheng Y and Hu W 2011 Phys. Rev. A 84 043818
|
[21] |
Chen H, Hu S and Qi L 2014 Opt. Commun. 331 139
|
[22] |
Wang H, Ling D, Zhang S, Zhu X and He Y 2014 Chin. Phys. B 23 064208
|
[23] |
Wang H and Christodoulides D N 2016 Commun. Nonlinear. Sci. Num. Simul. 38 130
|
[24] |
Hu S and Hu W 2012 J. Phys. B:At. Mol. Opt. Phys. 45 225401
|
[25] |
Chen H and Hu S 2014 Opt. Commun. 332 169
|
[26] |
Wang H, Ling D, Chen G, Zhu X and He Y 2015 Eur. Phys. J. D 69 31
|
[27] |
Chen H and Hu S 2015 Opt. Commun. 355 50
|
[28] |
Kartashov Y V, Konotop V V and Torner L 2015 Phys. Rev. Lett. 115 193902
|
[29] |
Huang C M and Dong L W 2016 Opt. Lett. 41 5194
|
[30] |
Zhong W P, Beli M and Zhang Y 2017 Ann. Phys. 378 432
|
[31] |
Hang C, Huang G and Konotop V V 2013 Phys. Rev. Lett. 110 083604
|
[32] |
Arlt J and Dholakia K 2000 Opt. Commun. 177 297
|
[33] |
Chattrapiban N, Rogers E A, Cofield D, Hill W T and Roy R 2003 Opt. Lett. 28 2183
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|