Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 118402    DOI: 10.1088/1674-1056/27/11/118402

Design and development of radio frequency output window for circular electron-positron collider klystron

Zhijun Lu(陆志军)1,2,3, Shigeki Fukuda1,4, Zusheng Zhou(周祖圣)1,3, Shilun Pei(裴士伦)1,3, Shengchang Wang(王盛昌)1,3, Ouzheng Xiao(肖欧正)1,3, UnNisa Zaib1,3, Bowen Bai(白博文)1,2,3, Guoxi Pei(裴国玺)1,3, Dong Dong(董东)1,3, Ningchuang Zhou(周宁闯)1,3, Shaozhe Wang(王少哲)5, Yunlong Chi(池云龙)1,3
1 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
4 High Energy Accelerator Research Organization, KEK, Oho, Ibaraki 305-0801, Japan;
5 GLVAC Industrial Technology Research Institute of High Power Devices, Kunshan 215300, China

This paper presents the first phase of design, analysis, and simulation for the klystron coaxial radio frequency (RF) output window. This study is motivated by 800 kW continuous wave (CW), 650 MHz klystrons for the future plan of circular electron-positron collider (CEPC) project. The RF window which is used in the klystron output section has a function to separate the klystron from the inner vacuum side to the outside, and high RF power propagates through the window with small power dissipation. Therefore, the window is a key component for the high power klystron. However, it is vulnerable to the high thermal stress and multipacting, so this paper presents the window design and analysis for these problems. The microwave design has been performed by using the computer simulation technology (CST) microwave studio and the return loss of the window has been established to be less than-90 dB. The multipacting simulation of the window has been carried out using MultiPac and CST particles studio. Through the multipacting analysis, it is shown that with thin coating of TiN, the multipacting effect has been suppressed effectively on the ceramic surface. The thermal analysis is carried out using ANSYS code and the temperature of alumina ceramic is lower than 310 K with water cooling. The design result successfully meets the requirement of the CEPC 650 MHz klystron. The manufacturing and high power test plan are also described in this paper.

Keywords:  klystron      coaxial radio frequency window      thermal stress      multipacting  
Received:  25 July 2018      Revised:  06 September 2018      Accepted manuscript online: 
PACS:  84.40.Fe (Microwave tubes (e.g., klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.))  
  29.20.Ej (Linear accelerators)  
Corresponding Authors:  Zhijun Lu     E-mail:

Cite this article: 

Zhijun Lu(陆志军), Shigeki Fukuda, Zusheng Zhou(周祖圣), Shilun Pei(裴士伦), Shengchang Wang(王盛昌), Ouzheng Xiao(肖欧正), UnNisa Zaib, Bowen Bai(白博文), Guoxi Pei(裴国玺), Dong Dong(董东), Ningchuang Zhou(周宁闯), Shaozhe Wang(王少哲), Yunlong Chi(池云龙) Design and development of radio frequency output window for circular electron-positron collider klystron 2018 Chin. Phys. B 27 118402

[1] Preliminary Conceptual Design Report IHEPAC 201501
[2] Zhou Z S, Fukuda S, Wang S C, Xiao O Z, Dong D, Zaib U N, Lu Z J and Pei G X 2016 The 7th International Particle Accelerator Conference May 8-132016 Busan, Korea, p. 3891
[3] Zaib U N, Fukuda S, Zhou Z S, Wang S C, Xiao O Z, Dong D, Lu Z J and Pei G X 2017 Chin. Phys. Lett. 34 012902
[4] Hill V C R, Burt G, Constable D, Lingwood C, Marrelli C and Syratchev I 2017 2017 Eighteenth International Vacuum Electronics Conference (IVEC), April 24-26, 2017 London, UK
[5] Konrad G T 1977 IEEE Trans. Nucl. Sci. 24 1689
[6] Naito F, Sakai H, Yoshimoto S, Mizuno H, Akasaka N, Kageyama T, Takeuchi Y, Akai K, Ezura E, Nakanishi H and Yamazaki Y 1998 The Input Coupler For KEKB ARES Cavity KEK Preprint 98-44
[7] Isagawa S, Takeuchi Y, Baba H, Tanaka J, Ohya K, Kawakami Y and Hosoi S 1987 Proceedings of the 12th IEEE Particle Accelerator Conference March 16-19, 1987 Washington DC, USA, p. 1934
[8] Ylä-Oijala P, Lukkarinen J, Järvenpää S, Ukkola M 2001 MultiPac 2.1 Multipacting Simulation Toolbox with 2D FEM Field Solver and MATLAB Graphical User Interface, User's manual, Rolf Nevanlinna Institute, Helsinki
[11] Yang S M 2010 Heat Transfer (Beijing:Higher Education Press) (in Chinese)
[12] Saito Y 1995 IEEE Trans. Dielectr. Electr. Insul. 2 243
[13] Saito Y 1989 Rev. Sci. Instrum. 60 1736
[1] Design and high-power test of 800-kW UHF klystron for CEPC
Ou-Zheng Xiao(肖欧正), Shigeki Fukuda, Zu-Sheng Zhou(周祖圣), Un-Nisa Zaib, Sheng-Chang Wang(王盛昌), Zhi-Jun Lu(陆志军), Guo-Xi Pei(裴国玺), Munawar Iqbal, and Dong Dong(董东). Chin. Phys. B, 2022, 31(8): 088401.
[2] Influence of particle size on the breaking of aluminum particle shells
Tian-Yi Wang(王天一), Zheng-Qing Zhou(周正青), Jian-Ping Peng(彭剑平),Yu-Kun Gao(高玉坤), and Ying-Hua Zhang(张英华). Chin. Phys. B, 2022, 31(7): 076107.
[3] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
[4] Thermal stress reduction of GaAs epitaxial growth on V-groove patterned Si substrates
Ze-Yuan Yang(杨泽园), Jun Wang(王俊), Guo-Feng Wu(武国峰), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(1): 016102.
[5] Application of thermal stress model to paint removal by Q-switched Nd:YAG laser
Zou Wan-Fang (邹万芳), Xie Ying-Mao (谢应茂), Xiao Xing (肖兴), Zeng Xiang-Zhi (曾祥志), Luo Ying (罗颖). Chin. Phys. B, 2014, 23(7): 074205.
[6] Icosahedral quasicrystals solids with an elliptic hole under uniform heat flow
Li Lian-He (李联和), Liu Guan-Ting (刘官厅). Chin. Phys. B, 2014, 23(5): 056101.
[7] Size-dependent thermal stresses in the core–shell nanoparticles
Astefanoaei I, Dumitru I, Stancu Al. Chin. Phys. B, 2013, 22(12): 128102.
[8] Influence of thermal stress on the characteristic parameters of AlGaN/GaN heterostructure Schottky contacts
Lü Yuan-Jie(吕元杰), Lin Zhao-Jun(林兆军), Zhang Yu(张宇), Meng Ling-Guo(孟令国), Cao Zhi-Fang(曹芝芳), Luan Chong-Biao(栾崇彪), Chen Hong(陈弘), and Wang Zhan-Guo(王占国) . Chin. Phys. B, 2011, 20(4): 047105.
[9] Cavity design and linear analysis of 225 GHz frequency-quadrupling gyroklystron
Liu Di-Wei(刘頔威), Yuan Xue-Song(袁学松), Yan Yang(鄢扬), and Liu Sheng-Gang(刘盛纲). Chin. Phys. B, 2009, 18(7): 3049-3053.
[10] Self-consistent nonlinear analysis of a frequency-quadrupling terahertz gyroklystron
Liu Di-Wei(刘頔威),Yuan Xue-Song(袁学松), Yan Yang(鄢扬), and Liu Sheng-Gang(刘盛纲) . Chin. Phys. B, 2009, 18(12): 5507-5510.
[11] Multipacting phenomenon at high electric fields of superconducting cavities
Zhu Feng (朱凤), Proch D., Hao Jian-Kui (郝建奎). Chin. Phys. B, 2005, 14(3): 494-499.
No Suggested Reading articles found!