Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 088114    DOI: 10.1088/1674-1056/23/8/088114
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Large-scale photonic crystals with inserted defects and their optical properties

Li Chao-Rong (李超荣), Li Juan (李娟), Yang Hu (杨虎), Zhao Yong-Qiang (赵永强), Wu Yan (吴艳), Dong Wen-Jun (董文钧), Chen Ben-Yong (陈本永)
Department of Physics and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract  Deliberately introducing defects into photonic crystals is an important way to functionalize the photonic crystals. We prepare a special large-scale three-dimensional (3D) photonic crystal (PC) with designed defects by an easy and low-cost method. The defect layer consists of photoresist strips or air-core strips. Field emission scanning electron microscopy (FESEM) shows that the 3D PC is of good quality and the defect layer is uniform. Different defect states shown in the ultraviolet-visible spectra are induced by the photoresist strip layer and air-core strip layer. The special large-scale 3D PC can be tested for integrated optical circuits, and the defects can act as optical waveguides.
Keywords:  photonic crystal      designed defects      photolithography      defect state  
Received:  08 January 2014      Revised:  27 February 2014      Accepted manuscript online: 
PACS:  81.16.Dn (Self-assembly)  
  61.72.Nn (Stacking faults and other planar or extended defects)  
  81.16.Rf (Micro- and nanoscale pattern formation)  
  81.16.-c (Methods of micro- and nanofabrication and processing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91122022 and 51172209) and the Program for Changjiang Scholars and Innovative Research Team (PCSIRT) in University, China (Grant No. IRT13097).
Corresponding Authors:  Li Chao-Rong     E-mail:  crli@zstu.edu.cn

Cite this article: 

Li Chao-Rong (李超荣), Li Juan (李娟), Yang Hu (杨虎), Zhao Yong-Qiang (赵永强), Wu Yan (吴艳), Dong Wen-Jun (董文钧), Chen Ben-Yong (陈本永) Large-scale photonic crystals with inserted defects and their optical properties 2014 Chin. Phys. B 23 088114

[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] John S 1987 Phys. Rev. Lett. 58 2486
[3] Jiang H T, Li Y H, Li H Q, Zhu R L, Zhang Y W and Chen H 2003 Physics 32 799 (in Chinese)
[4] Zhang Q, Meng Q B, Cheng B Y and Zhang D Z 2004 Acta Phys. Sin. 53 58 (in Chinese)
[5] Chabanov A A, Jun Y and Norris D J 2004 Appl. Phys. Lett. 84 3573
[6] Joannopoulos J D, Johnson S G, Winn J N and Meade R D 2008 Photonic Crystals: Molding the Flow of Light, 2nd edn. (Princeton: Princeton University Press) p. 137
[7] Zhen W H, Ren G, Xing M X, Du X Y, Wang K, Zhang Y J and Chen L H 2007 Physics 36 619 (in Chinese)
[8] Yablonovitch E, Gmitter T J, Meade R D, Rappe A M, Brommer K D and Joannopoulos J D 1991 Phys. Rev. Lett. 67 3380
[9] Liu Y Z and Li Z Y 2008 Physics 37 658 (in Chinese)
[10] Wang L, Yan Q and Zhao X S 2006 Langmuir 22 3481
[11] Jun Y, Leatherdale C A and Norris D J 2005 Adv. Mater. 17 1908
[12] Lee W, Pruzinsky S A and Braun P V 2002 Adv. Mater. 14 271
[13] Yan Q, Chen A, Chua S J and Zhao X S 2005 Adv. Mater. 17 2849
[14] Tétreault N, Míguez H, Yang S M, Kitaev V and Ozin G A 2003 Adv. Mater. 15 1167
[15] Yan Q, Zhou Z, Zhao X S and Chua S J 2005 Adv. Mater. 17 1917
[16] Vekris E, Kitaev V, von Freymann G, Perovic D D, Aitchison J S and Ozin G A 2005 Adv. Mater. 17 1269
[17] Ferrand P, Seekamp J, Egen M, Zentel R, Romanov S G and Sotomayor Torres C M 2004 Microelectronic Engineering 73 362
[18] Wang A J, Chen S L, Dong P, Cai X G, Zhou Q, Yuan G M, Hu C T and Zhang D Z 2009 Chin. Phys. Lett. 26 024210
[19] Zhao Y, Wostyn K, de Schaetzen G, Clays K, Hellemans L, Persoons A, Szekeres M and Schoonheydt R A 2003 Appl. Phys. Lett. 82 3764
[20] Fleischhaker F, Arsenault A C, Schmidtke J, Zentel R and Ozin G A 2006 Chem. Mater. 18 5640
[21] Tétreault N, Mihi A, Míguez H, Rodríguez I, Ozin G A, Meseguer F and Kitaev V 2004 Adv. Mater. 16 346
[22] Palacios-Lidón E, Galisteo-López J F, Juárez B H and López C 2004 Adv. Mater. 16 341
[23] Fleischhaker F, Arsenault A C, Kitaev V, Peiris F C, von Freymann G, Manners I, Zentel R and Ozin G A 2005 J. Am. Chem. Soc. 127 9318
[24] Stober W, Fink A and Bohn E. J 1986 Colloid Interface Sci. 26 62
[25] Liu K and Jiang L 2011 Nano Today 6 155
[26] Aguirre C I, Reguera E and Stein A 2010 Adv. Funct. Mater. 20 2565
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[4] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[5] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[6] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[7] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[8] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[9] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[10] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[11] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[12] Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
Wen-Zhe Liu(刘文哲), Lei Shi(石磊), Che-Ting Chan(陈子亭), and Jian Zi(资剑). Chin. Phys. B, 2022, 31(10): 104211.
[13] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[14] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[15] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
No Suggested Reading articles found!