Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 087806    DOI: 10.1088/1674-1056/23/8/087806
SPECIAL TOPI—International Conference on Nanoscience & Technology, China 2013 Prev   Next  

A tunable infrared plasmonic polarization filter with asymmetrical cross resonator

Chen Xi-Yao (陈曦曜)a, Zhong Yuan-Gang (钟远刚)b, Jiang Jun-Zhen (蒋俊贞)b, Zeng Xia-Hui (曾夏辉)a, Fu Ping (傅平)a, Qiu Yi-Shen (邱怡申)b, Li Hui (李晖)b
a Department of Physics and Electronic Information Engineering, Minjiang University, Fuzhou 350108, China;
b College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350007, China
Abstract  A tunable infrared plasmonic polarization filter is proposed and investigated in this paper. The filter is based on the sandwich absorption structure which consists of three layers. The top layer is an array of asymmetrical cross resonator. The middle and bottom layers are dielectric spacer and metal film respectively. By absorbing specific wavelength of the incident light perfectly, the reflection spectrum of the structure shows filter performance. The calculated results show that the absorption wavelength is strongly dependent on the length of branch of the asymmetrical cross resonator which is parallel to the light polarization and independent of the length of the vertical one. Therefore, the asymmetrical cross resonator filter structure opens the way for freely tuning the filtering wavelength for a different light polarization. We can fix a resonant wavelength (absorption wavelength) corresponding to one polarization and change the resonant wavelength for the other polarization by adjusting the corresponding branch length of the asymmetrical cross resonator, or change the two resonant wavelengths of both two polarizations at the same time.
Keywords:  polarization filter      asymmetrical cross resonator      numerical simulation  
Received:  04 September 2013      Revised:  18 March 2014      Accepted manuscript online: 
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61178089 and 51277091) and the Natural Science Foundation of Fujian Province, China (Grant No. 2013J05095).
Corresponding Authors:  Chen Xi-Yao     E-mail:  chenxy2628@aliyun.com

Cite this article: 

Chen Xi-Yao (陈曦曜), Zhong Yuan-Gang (钟远刚), Jiang Jun-Zhen (蒋俊贞), Zeng Xia-Hui (曾夏辉), Fu Ping (傅平), Qiu Yi-Shen (邱怡申), Li Hui (李晖) A tunable infrared plasmonic polarization filter with asymmetrical cross resonator 2014 Chin. Phys. B 23 087806

[1] Pendy J B, Schurig D and Smith D R 2006 Science 312 5781
[2] Tuong P U, Lam V D, Park J W, Choi E H, Nikitov S and Lee Y P 2013 Photonics and Nanostructures-Foundmentals and Applications 11 1
[3] Pendty J B 2009 Contemporary Physics 50 1
[4] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 5081
[5] Charles J R, Robier R, Shivkumar C G, Luis G P and Ayrton A B 2012 Opt. Express 20 19
[6] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 20
[7] Lu H, Liu X M, Mao D, Wang L R and Gong Y K 2010 Opt. Express 18 17
[8] Nezhad V F, Abaslou S and Abrishamian M S 2013 J. Opt. 15 5
[9] Zand I, Abrishamian M S and Beriri P 2013 Opt. Express 21 1
[10] Nadhim A M, Wen C C, Chung C Y and Shih M H 2013 Nanotechnology 23 44
[11] EastFDTD v2.0, DONGJUN Science and Technology Co. China
[12] Chen H T 2012 Opt. Express 20 7
[13] Liu X, Starr T, Starr A F and Padilla W J 2010 Phys. Rev. Lett. 104 207403
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[4] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[5] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[6] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[7] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[8] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[9] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[10] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[11] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[12] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[13] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[14] Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating
Xiaoxi Qiao(乔小溪), Tongling Xia(夏同领), and Ping Chen(陈平). Chin. Phys. B, 2021, 30(1): 018104.
[15] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
No Suggested Reading articles found!