CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Investigations of the half-metallic behavior and the magnetic and thermodynamic properties of half-Heusler CoMnTe and RuMnTe compounds:A first-principles study |
T. Djaafria, A. Djaafria, A. Eliasa, G. Murtazab, R. Khenatac, R. Ahmedd, S. Bin Omrane, D. Rachedf |
a Department of Physics, Faculty of Science, Dr Tahar Moulay University, 20000 Saida, Algeria; b Modeling Laboratory, Department of Physics, Islamia College Peshawar, Pakistan; c LPQ3M Laboratory, Department of Physics, Faculty of Science and Technology, Mascara University, 29000 Mascara, Algeria; d Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor, Malaysia; e Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia; f Department of Physics, Faculty of Science, Djillali Liabes University, 22000 Sidi Bel-Abbes, Algeria |
|
|
Abstract First-principles spin-polarized density functional theory (DFT) investigations of the structural, electronic, magnetic, and thermodynamics characteristics of the half-Heusler, CoMnTe and RuMnTe compounds are carried out. Calculations are accomplished within a state of the art full-potential (FP) linearized (L) augmented plane wave plus a local orbital (APW+lo) computational approach framed within DFT. The generalized gradient approximation (GGA) parameterized by Perdew, Burke, and Ernzerhof (PBE) is implemented as an exchange correlation functional as a part of the total energy calculation. From the analysis of the calculated electronic band structure as well as the density of states for both compounds, a strong hybridization between d states of the higher valent transition metal (TM) atoms (Co, Ru) and lower valent TM atoms of (Mn) is observed. Furthermore, total and partial density of states (PDOS) of the ground state and the results of spin magnetic moments reveal that these compounds are both stable and ideal half-metallic ferromagnetic. The effects of the unit cell volume on the magnetic properties and half-metallicity are crucial. It is worth noting that our computed results of the total spin magnetic moments, for CoMnTe equal to 4 μB and 3 μB per unit cell for RuMnTe, nicely follow the rule μtot=Zt-18. Using the quasi-harmonic Debye model, which considers the phononic effects, the effecs of pressure P and temperature T on the lattice parameter, bulk modulus, thermal expansion coefficient, Debye temperature, and heat capacity for these compounds are investigated for the first time.
|
Received: 12 January 2014
Revised: 28 February 2014
Accepted manuscript online:
|
PACS:
|
71.15.Ap
|
(Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods, ASA, linearized methods, etc.))
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
74.25.Bt
|
(Thermodynamic properties)
|
|
75.50.Gg
|
(Ferrimagnetics)
|
|
Corresponding Authors:
G. Murtaza, R. Khenata
E-mail: murtaza@icp.edu.pk;khenata_rabah@yahoo.fr
|
Cite this article:
T. Djaafri, A. Djaafri, A. Elias, G. Murtaza, R. Khenata, R. Ahmed, S. Bin Omran, D. Rached Investigations of the half-metallic behavior and the magnetic and thermodynamic properties of half-Heusler CoMnTe and RuMnTe compounds:A first-principles study 2014 Chin. Phys. B 23 087103
|
[1] |
Heusler F 1903 Verh. Dtsch. Phys. Ges. 5 219
|
[2] |
de Groot R A, Mueller F M, van Engen P G and Buschow K H J 1984 Appl. Phys. 55 2151
|
[3] |
Galanaki I an Dederich P H 2005 J. Phys.: Condens. Matter 676 1
|
[4] |
Endo K, Phayama T and Kitamura R 1964 J. Phys. Soc. Jpn. 19 1494
|
[5] |
Kubler J 1984 Physica B 127 257
|
[6] |
Dunlap R, Stroink G and Dini K 1986 J. Phys. F: Met. Phys. 16 1083
|
[7] |
Zukovski W, Andrejezuk A, Dobrzyeski L, Cooper M J, Dixon M A G, Gardelis S, Lawson P K, Buslaps T, Kaprzyk S, Neumann K U and Ziebeck K R 1997 J. Phys.: Condens. Matter 9 10993
|
[8] |
Worgull J, Petti E and Trivisonno J 1996 Phys. Rev. B 54 15695
|
[9] |
Plogmann S, Schlatholter T, Braun J and Neumann M 1999 Phys. Rev. B 60 6428
|
[10] |
Ishada S, Ishada J, Asano S and Yamashita J 1978 J. Phys. Soc. Jpn. 45 1239
|
[11] |
Kubler J, Williams A R and Sommers C B 1983 Phys. Rev. B 28 1745
|
[12] |
Fujii S, Ishida S and Asano S 1989 J. Phys. Soc. Jpn. 58 3657
|
[13] |
Webster P J and Ziebeck K R A 1973 J. Phys. Chem. Solids 34 1647
|
[14] |
Aquela A A, Enkovaara J, Uliakko K and Nieminen R E 1999 J. Phys.: Condens. Matter 11 2017
|
[15] |
Deb A and Sakurai Y 2000 J. Phys.: Condens. Matter 12 2997
|
[16] |
Kakeshita K and Ullakko K 2002 MRS Bulletin 27 105
|
[17] |
Mullner R, Chermenko V A and Kostorz G 2003 Ser. Mater. 49 129
|
[18] |
Chernenko V A, L'vov V A, Mullner R, Kostorz G and Takagi T 2004 Phys. Rev. B 69 134410
|
[19] |
Kulkova S E, Eremeev S V and Kulkov S S 2004 Solid State Commun. 130 793
|
[20] |
Kulkova S E, Eremeev S V, Kakeshita T, Kulkov S S and Rudenski G E 2006 Mater. Trans. 47 599
|
[21] |
de Groot R A, van der Kraan A M and Buschow K H J 1986 J. Magn. Magn. Mater. 61 330
|
[22] |
Blaha P, Schwarz K, Sorantin P and Trickey S B 1990 Comput. Phys. Commun. 59 399
|
[23] |
Wong K M, Alay-e-Abbas S M, Fang Y, Shaukat A and Lei Y 2013 J. Appl. Phys. 114 034901
|
[24] |
Blonco M A, Francisco E and Luaña V 2004 Comput. Phys. Commun. 158 57
|
[25] |
Blonco M A, Pendás A M, Francisco E, Recio J M and Franco R 1996 J. Mol. Struct. Theochem 368 245
|
[26] |
Francisco E, Blonco M A and Sanjurjo G 2001 Phys. Rev. B 63 049107
|
[27] |
Merabiha O, Seddik T, Khenata R, Murtaza G, Bouhemadou A, Takagiwa Y, Bin Omran S and Rached D 2014 J. Alloys Compd. 586 529
|
[28] |
Bouhemadou A, Khenata R and Amrani B 2009 Physica B 404 3534
|
[29] |
Peng F, Fu H and Yang X 2008 Physica B 403 2851
|
[30] |
Selçuk Kervan and Nazmiye Kervan 2014 Intermetallics 46 45
|
[31] |
Lin S Y, Yang X B and Zhao Y J 2014 J. Magn. Magn. Mater. 350 119
|
[32] |
Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
|
[33] |
Otto M J, van Woerden R A M, van der Valk P J, Wijngaard J, van Bruggen C F, Haas C and Buschow K H J 1989 J. Phys.: Condens. Matter 1 2341
|
[34] |
de Groot R A, Mueller F M, van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024
|
[35] |
Galanakis I, Dederichs P H and Papanikolaou N 2002 Phys. Rev. B 66 134428
|
[36] |
Galanakis I, Dederichs P H and Papanikolaou N 2002 Phys. Rev. B 66 174429
|
[37] |
Ishida S, Fujii S, Kashiwagi S and Asano S 1995 J. Phys. Soc. Jpn. 64 2152
|
[38] |
Fujii S, Ishida S and Asano S 1995 J. Phys. Soc. Jpn. 64 185
|
[39] |
Zhang M, Liu Z H, Hu H N, Liu G D, Cui Y T, Wu G H, Brek R, de Boer F R and Li Y X 2004 J. Appl. Phys. 95 7219
|
[40] |
Nanda B R K and Dasgupta I 2003 J. Phys.: Condens. Matter 15 7307
|
[41] |
Jung D, Koo H J and Whangbo M J 2000 J. Mol. Struct. Theochem 527 113
|
[42] |
Zhang M, Dai X, Hu H, Lui G, Cui Y, Chen J, Wang J and Wu G 2003 J. Phys.: Condens. Matter 15 7891
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|