Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 078102    DOI: 10.1088/1674-1056/23/7/078102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Improved interfacial and electrical properties of GaSb metal oxide semiconductor devices passivated with acidic (NH4)2S solution

Zhao Lian-Feng (赵连锋), Tan Zhen (谭桢), Wang Jing (王敬), Xu Jun (许军)
Tsinghua National Laboratory for Information Science and Technology, Institute of Microelectronics, Tsinghua University, Beijing 100084, China
Abstract  Surface passivation with acidic (NH4)2S solution is shown to be effective in improving the interfacial and electrical properties of HfO2/GaSb metal oxide semiconductor devices. Compared with control samples, the samples treated with acidic (NH4)2S solution show great improvements in gate leakage current, frequency dispersion, border trap density, and interface trap density. These improvements are attributed to the enhancing passivation of the substrates, according to analysis from the perspective of chemical mechanism, X-ray photoelectron spectroscopy, and high-resolution cross-sectional transmission electron microscopy.
Keywords:  GaSb      metal oxide semiconductor      sulfur passivation  
Received:  10 November 2013      Revised:  25 December 2013      Accepted manuscript online: 
PACS:  81.65.Rv (Passivation)  
  73.20.At (Surface states, band structure, electron density of states)  
  81.05.Ea (III-V semiconductors)  
  77.55.dj (For nonsilicon electronics (Ge, III-V, II-VI, organic electronics))  
Fund: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2011CBA00602) and the Major Project of the National Science and Technology of China (Grant No. 2011ZX02708-002).
Corresponding Authors:  Xu Jun     E-mail:  junxu@tsinghua.edu.cn
About author:  81.65.Rv; 73.20.At; 81.05.Ea; 77.55.dj

Cite this article: 

Zhao Lian-Feng (赵连锋), Tan Zhen (谭桢), Wang Jing (王敬), Xu Jun (许军) Improved interfacial and electrical properties of GaSb metal oxide semiconductor devices passivated with acidic (NH4)2S solution 2014 Chin. Phys. B 23 078102

[1] Del Alamo J A 2011 Nature 479 317
[2] Suzuki R, Taoka N, Yokoyama M, Lee S, Kim S H, Hoshii T, Yasuda T, Jevasuwan W, Maeda T, Ichikawa O, Fukuhara N, Hata M, Takenaka M and Takagi S 2012 Appl. Phys. Lett. 100 132906
[3] Min X, Runsheng W and Ye P D 2011 IEEE Electron Dev. Lett. 32 883
[4] Yuan Z, Nainani A, Sun Y, Lin J, Pianetta P and Saraswat K C 2011 Appl. Phys. Lett. 98 172106
[5] Ali A, Madan H S, Kirk A P, Zhao D A, Mourey D A, Hudait M K, Wallace R M, Jackson T N, Bennett B R, Boos J B and Datta S 2010 Appl. Phys. Lett. 97 143502
[6] Chen Y T, Zhao H, Wang Y, Xue F, Zhou F and Lee J C 2010 Appl. Phys. Lett. 96 253502
[7] Xie R and Zhu C 2007 IEEE Electron Dev. Lett. 28 976
[8] Zhu S Y, Xu J P, Wang L S and Huang Y 2013 Chin. Phys. B 22 097301
[9] Liu C, Zhang Y M, Zhang Y M and Lü H L 2013 Chin. Phys. B 22 076701
[10] Ruppalt L B, Cleveland E R, Champlain J G, Prokes S M, Boos J B, Park D and Bennett B R 2012 Appl. Phys. Lett. 101 231601
[11] Sun J B Yang Z W, Geng Y, Lu H L, Wu W R, Ye X D, Zhang W, Shi Y and Zhao Y 2013 Chin. Phys. B 22 067701
[12] Liu G Z, Li C, Lu C B, Tang R F, Tang M R, Wu Z, Yang X, Huang W, Lai H K and Chen S Y 2012 Chin. Phys. B 21 117701
[13] Gu J J, Neal A T and Ye P D 2011 Appl. Phys. Lett. 99 152113
[14] Carpenter M S, Melloch M R, Lundstrom M S and Tobin S P 1988 Appl. Phys. Lett. 52 2157
[15] Lay T S, Huang K H, Hung W H, Hong M, Kwo J and Mannaerts J P 2001 Solid-State Electron. 45 423
[16] Xiao K, Xu Q Z, Ye K H, Liu Z Q, Fu L M, Li N, Chen Y B and Su Y Z 2013 ECS Solid State Lett. 2 P51
[17] Liu Z Y, Hawkins B and Kuech T F 2003 J. Vac. Sci. Technol. B 21 71
[18] Shahinur Rahman Md, Evangelou E K, Konofaos N and Dimoulas A 2012 J. Appl. Phys. 112 094501
[19] Stemmer S, Chobpattana V and Rajan S 2012 Appl. Phys. Lett. 100 233510
[20] Krylov I, Kornblum L, Gavrilov A, Ritter D and Eizenberg M 2012 Appl. Phys. Lett. 100 173508
[21] Fleetwood D M and Saks N S 1996 J. Appl. Phys. 79 1583
[22] Nicollian E H and Goetzberger A 1967 Bell Syst. Tech. J. 46 1055
[23] Shockley W and Read W T 1952 Jr. Phys. Rev. 87 835
[24] Tan Z, Zhao L F, Wang J and Xu J 2014 Chin. Phys. B 23 017701
[25] Nainani A, Irisawa T, Yuan Z, Bennett B R, Boos J B, Nishi Y and Saraswat K C 2011 IEEE Trans. Electron Dev. 58 3407
[1] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[2] Heterogeneous integration of GaSb layer on (100) Si substrate by ion-slicing technique
Ren-Jie Liu(刘仁杰), Jia-Jie Lin(林家杰), Zheng-Hao Shen(沈正皓), Jia-Liang Sun(孙嘉良), Tian-Gui You(游天桂), Jin Li(李进), Min Liao(廖敏), and Yi-Chun Zhou(周益春). Chin. Phys. B, 2022, 31(7): 076103.
[3] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[4] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[5] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[6] Growth of high quality InSb thin films on GaAs substrates by molecular beam epitaxy method with AlInSb/GaSb as compound buffer layers
Yong Li(李勇), Xiao-Ming Li(李晓明), Rui-Ting Hao(郝瑞亭), Jie Guo(郭杰), Yu Zhuang(庄玉), Su-Ning Cui(崔素宁), Guo-Shuai Wei(魏国帅), Xiao-Le Ma(马晓乐), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川), and Yao Wang(王耀). Chin. Phys. B, 2021, 30(2): 028504.
[7] A method to extend wavelength into middle-wavelength infrared based on InAsSb/(Al)GaSb interband transition quantum well infrared photodetector
Xuan-Zhang Li(李炫璋), Ling Sun(孙令), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Chen Yue(岳琛), Li-Li Xie(谢莉莉), Wen-Xin Wang(王文新), Hong Chen(陈弘), Hai-Qiang Jia(贾海强), Lu Wang(王禄). Chin. Phys. B, 2020, 29(3): 038504.
[8] Short-wavelength infrared InAs/GaSb superlattice hole avalanche photodiode
Jia-Feng Liu(刘家丰), Ning-Tao Zhang(张宁涛), Yan Teng(滕), Xiu-Jun Hao(郝修军), Yu Zhao(赵宇), Ying Chen(陈影), He Zhu(朱赫), Hong Zhu(朱虹), Qi-Hua Wu(吴启花), Xin Li(李欣), Bai-Le Chen(陈佰乐)§, and Yong Huang(黄勇). Chin. Phys. B, 2020, 29(11): 117301.
[9] Mechanism of free electron concentration saturation phenomenon in Te-GaSb single crystal
Ding Yu(余丁), Guiying Shen(沈桂英), Hui Xie(谢辉), Jingming Liu(刘京明), Jing Sun(孙静), Youwen Zhao(赵有文). Chin. Phys. B, 2019, 28(5): 057102.
[10] High quantum efficiency long-/long-wave dual-color type-Ⅱ InAs/GaSb infrared detector
Zhi Jiang(蒋志), Yao-Yao Sun(孙姚耀), Chun-Yan Guo(郭春妍), Yue-Xi Lv(吕粤希), Hong-Yue Hao(郝宏玥), Dong-Wei Jiang(蒋洞微), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(3): 038504.
[11] High quality 2-μm GaSb-based optically pumped semiconductor disk laser grown by molecular beam epitaxy
Jin-Ming Shang(尚金铭), Jian Feng(冯健), Cheng-Ao Yang(杨成奥), Sheng-Wen Xie(谢圣文), Yi Zhang(张一), Cun-Zhu Tong(佟存柱), Yu Zhang(张宇), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(3): 034202.
[12] A review on MBE-grown HgCdSe infrared materials on GaSb (211)B substrates
Z K Zhang, W W Pan, J L Liu, W Lei. Chin. Phys. B, 2019, 28(1): 018103.
[13] Room-temperature operating extended short wavelength infrared photodetector based on interband transition of InAsSb/GaSb quantum well
Ling Sun(孙令), Lu Wang(王禄), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Jun Fang(方俊), Li-Li Xie(谢莉莉), Zhi-Biao Hao(郝智彪), Hai-Qiang Jia(贾海强), Wen-Xin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2018, 27(4): 047209.
[14] Room-temperature continuous-wave interband cascade laser emitting at 3.45 μm
Yi Zhang(张一), Fu-Hui Shao(邵福会), Cheng-Ao Yang(杨成奥), Sheng-Wen Xie(谢圣文), Shu-Shan Huang(黄书山), Ye Yuan(袁野), Jin-Ming Shang(尚金铭), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2018, 27(12): 124207.
[15] Performance of dual-band short- or mid-wavelength infrared photodetectors based on InGaAsSb bulk materials and InAs/GaSb superlattices
Yao-yao Sun(孙姚耀), Yue-xi Lv(吕粤希), Xi Han(韩玺), Chun-yan Guo(郭春妍), Zhi Jiang(蒋志), Hong-yue Hao(郝宏玥), Dong-wei Jiang(蒋洞微), Guo-wei Wang(王国伟), Ying-qiang Xu(徐应强), Zhi-chuan Niu(牛智川). Chin. Phys. B, 2017, 26(9): 098506.
No Suggested Reading articles found!