INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Improved interfacial and electrical properties of GaSb metal oxide semiconductor devices passivated with acidic (NH4)2S solution |
Zhao Lian-Feng (赵连锋), Tan Zhen (谭桢), Wang Jing (王敬), Xu Jun (许军) |
Tsinghua National Laboratory for Information Science and Technology, Institute of Microelectronics, Tsinghua University, Beijing 100084, China |
|
|
Abstract Surface passivation with acidic (NH4)2S solution is shown to be effective in improving the interfacial and electrical properties of HfO2/GaSb metal oxide semiconductor devices. Compared with control samples, the samples treated with acidic (NH4)2S solution show great improvements in gate leakage current, frequency dispersion, border trap density, and interface trap density. These improvements are attributed to the enhancing passivation of the substrates, according to analysis from the perspective of chemical mechanism, X-ray photoelectron spectroscopy, and high-resolution cross-sectional transmission electron microscopy.
|
Received: 10 November 2013
Revised: 25 December 2013
Accepted manuscript online:
|
PACS:
|
81.65.Rv
|
(Passivation)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
77.55.dj
|
(For nonsilicon electronics (Ge, III-V, II-VI, organic electronics))
|
|
Fund: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2011CBA00602) and the Major Project of the National Science and Technology of China (Grant No. 2011ZX02708-002). |
Corresponding Authors:
Xu Jun
E-mail: junxu@tsinghua.edu.cn
|
About author: 81.65.Rv; 73.20.At; 81.05.Ea; 77.55.dj |
Cite this article:
Zhao Lian-Feng (赵连锋), Tan Zhen (谭桢), Wang Jing (王敬), Xu Jun (许军) Improved interfacial and electrical properties of GaSb metal oxide semiconductor devices passivated with acidic (NH4)2S solution 2014 Chin. Phys. B 23 078102
|
[1] |
Del Alamo J A 2011 Nature 479 317
|
[2] |
Suzuki R, Taoka N, Yokoyama M, Lee S, Kim S H, Hoshii T, Yasuda T, Jevasuwan W, Maeda T, Ichikawa O, Fukuhara N, Hata M, Takenaka M and Takagi S 2012 Appl. Phys. Lett. 100 132906
|
[3] |
Min X, Runsheng W and Ye P D 2011 IEEE Electron Dev. Lett. 32 883
|
[4] |
Yuan Z, Nainani A, Sun Y, Lin J, Pianetta P and Saraswat K C 2011 Appl. Phys. Lett. 98 172106
|
[5] |
Ali A, Madan H S, Kirk A P, Zhao D A, Mourey D A, Hudait M K, Wallace R M, Jackson T N, Bennett B R, Boos J B and Datta S 2010 Appl. Phys. Lett. 97 143502
|
[6] |
Chen Y T, Zhao H, Wang Y, Xue F, Zhou F and Lee J C 2010 Appl. Phys. Lett. 96 253502
|
[7] |
Xie R and Zhu C 2007 IEEE Electron Dev. Lett. 28 976
|
[8] |
Zhu S Y, Xu J P, Wang L S and Huang Y 2013 Chin. Phys. B 22 097301
|
[9] |
Liu C, Zhang Y M, Zhang Y M and Lü H L 2013 Chin. Phys. B 22 076701
|
[10] |
Ruppalt L B, Cleveland E R, Champlain J G, Prokes S M, Boos J B, Park D and Bennett B R 2012 Appl. Phys. Lett. 101 231601
|
[11] |
Sun J B Yang Z W, Geng Y, Lu H L, Wu W R, Ye X D, Zhang W, Shi Y and Zhao Y 2013 Chin. Phys. B 22 067701
|
[12] |
Liu G Z, Li C, Lu C B, Tang R F, Tang M R, Wu Z, Yang X, Huang W, Lai H K and Chen S Y 2012 Chin. Phys. B 21 117701
|
[13] |
Gu J J, Neal A T and Ye P D 2011 Appl. Phys. Lett. 99 152113
|
[14] |
Carpenter M S, Melloch M R, Lundstrom M S and Tobin S P 1988 Appl. Phys. Lett. 52 2157
|
[15] |
Lay T S, Huang K H, Hung W H, Hong M, Kwo J and Mannaerts J P 2001 Solid-State Electron. 45 423
|
[16] |
Xiao K, Xu Q Z, Ye K H, Liu Z Q, Fu L M, Li N, Chen Y B and Su Y Z 2013 ECS Solid State Lett. 2 P51
|
[17] |
Liu Z Y, Hawkins B and Kuech T F 2003 J. Vac. Sci. Technol. B 21 71
|
[18] |
Shahinur Rahman Md, Evangelou E K, Konofaos N and Dimoulas A 2012 J. Appl. Phys. 112 094501
|
[19] |
Stemmer S, Chobpattana V and Rajan S 2012 Appl. Phys. Lett. 100 233510
|
[20] |
Krylov I, Kornblum L, Gavrilov A, Ritter D and Eizenberg M 2012 Appl. Phys. Lett. 100 173508
|
[21] |
Fleetwood D M and Saks N S 1996 J. Appl. Phys. 79 1583
|
[22] |
Nicollian E H and Goetzberger A 1967 Bell Syst. Tech. J. 46 1055
|
[23] |
Shockley W and Read W T 1952 Jr. Phys. Rev. 87 835
|
[24] |
Tan Z, Zhao L F, Wang J and Xu J 2014 Chin. Phys. B 23 017701
|
[25] |
Nainani A, Irisawa T, Yuan Z, Bennett B R, Boos J B, Nishi Y and Saraswat K C 2011 IEEE Trans. Electron Dev. 58 3407
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|