CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Lattice structures and electronic properties of CIGS/CdS interface:First-principles calculations |
Tang Fu-Ling (汤富领)a b, Liu Ran (刘冉)a b, Xue Hong-Tao (薛红涛)a, Lu Wen-Jiang (路文江)a, Feng Yu-Dong (冯煜东)b, Rui Zhi-Yuan (芮执元)a, Huang Min (黄敏)c |
a State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Department of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; b Science and Technology on Surface Engineering Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China; c State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China |
|
|
Abstract Using first-principles calculations within density functional theory, we study the atomic structures and electronic properties of the perfect and defective (2VCu+InCu) CuInGaSe2/CdS interfaces theoretically, especially the interface states. We find that the local lattice structure of (2VCu+InCu) interface is somewhat disorganized. By analyzing the local density of states projected on several atomic layers of the two interfaces models, we find that for the (2VCu+InCu) interface the interface states near the Fermi level in CuInGaSe2 and CdS band gap regions are mainly composed of interfacial Se-4p, Cu-3d and S-3p orbitals, while for the perfect interface there are no clear interface states in the CuInGaSe2 region but only some interface states which are mainly composed of S-3p orbitals in the valance band of CdS region.
|
Received: 02 December 2013
Revised: 31 December 2013
Accepted manuscript online:
|
PACS:
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
02.60.Cb
|
(Numerical simulation; solution of equations)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11364025 and 11164014) and the Gansu Science and Technology Pillar Program, China (Grant No. 1204GKCA057). |
Corresponding Authors:
Tang Fu-Ling
E-mail: tfl03@mails.tsinghua.edu.cn
|
About author: 73.20.-r; 02.60.Cb; 73.20.At |
Cite this article:
Tang Fu-Ling (汤富领), Liu Ran (刘冉), Xue Hong-Tao (薛红涛), Lu Wen-Jiang (路文江), Feng Yu-Dong (冯煜东), Rui Zhi-Yuan (芮执元), Huang Min (黄敏) Lattice structures and electronic properties of CIGS/CdS interface:First-principles calculations 2014 Chin. Phys. B 23 077301
|
[1] |
Turcu M and Rau U 2003 J. Phys. Chem. Solids 64 1591
|
[2] |
Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W and Powalla M 2011 Prog. Photovoltaics Res. Appl. 19 894
|
[3] |
Shi S Q, Tanaka S and Kohyama M 2006 Model. Simul. Mater. Sc. 14 S21
|
[4] |
Shi S Q, Tanaka S and Kohyama M 2007 Phys. Rev. B 76 075431
|
[5] |
Wang W C, Xiong K, Lee G, Min H, Wallace R M and Cho K 2010 Appl. Surf. Sci. 256 6569
|
[6] |
Lu H, Shen D H, Xue Q K, Polak M and Froumin N 2001 Chin. Phys. Lett. 18 94
|
[7] |
Lei H, Liu C H, Lin B X and Fu Z X 2005 Chin. Phys. Lett. 22 185
|
[8] |
Li M, Zhang J Y, Zhang Y and Wang T M 2012 Chin. Phys. B 21 067302
|
[9] |
Cojocaru-Miredin O, Choi P, Wuerz R and Raabe D 2011 Appl. Phys. Lett. 98 103504
|
[10] |
Cojocaru-Mirédin O, Choi P, Wuerz R and Raabe D 2012 Appl. Phys. Lett. 101 181605
|
[11] |
Liao D and Rockett A 2003 J. Appl. Phys. 93 9380
|
[12] |
Bao W and Ichimura M 2012 Int. J. Photoenergy 2012 619812
|
[13] |
Minemoto T, Matsui T, Takakura H, Hamakawa Y, Negami T, Hashimoto Y, Uenoyama T and Kitagawa M 2001 Sol. Energ. Mater. Sol. C 67 83
|
[14] |
Hinuma Y, Oba F, Kumagai Y and Tanaka I 2013 Phys. Rev. B 88 035305
|
[15] |
Tang Y H, Zhang H, Cui L X, Ouyang C Y, Shi S Q, Tang W H, Li H, Lee J-S and Chen L Q 2010 Phys. Rev. B 82 125104
|
[16] |
Shi S Q, Tanaka S and Kohyama M 2006 Mater. Trans. 47 2696
|
[17] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[18] |
Shi S Q, Tanaka S and Kohyama M 2007 J. Am. Ceram. Soc 90 2429
|
[19] |
Heyd J, Scuseria G and Ernzerhof M 2003 J. Chem. Phys. 118 8207
|
[20] |
Wan F C, Tang F L, Zhu Z X, Xue H T, Lua W J, Feng Y D and Rui Z Y 2013 Mater. Sci. Semicon. Process. 16 1422
|
[21] |
Zhu Z X, Tang F L, Lu W J, Feng Y D, Wang Z M and Wang Y 2012 Physica B 407 4814
|
[22] |
Wang W H, Zhao G Z and Liang X X 2013 Chin. Phys. B 22 120205
|
[23] |
Wu H P, Deng K M, Tan W S, Xiao C Y, Hu F L and Li Q X 2009 Chin. Phys. B 18 5008
|
[24] |
Liechtenstein A, Anisimov V and Zaanen J 1995 Phys. Rev. B 52 R5467
|
[25] |
Lany S and Zunger A 2005 Phys. Rev. B 72 035215
|
[26] |
Vidal J, Botti S, Olsson P, Guillemoles J F and Reining L 2010 Phys. Rev. Lett. 104 056401
|
[27] |
Szabová L, Camellone M F, Huang M, Matolín V and Fabris S 2010 J. Chem. Phys. 133 234705
|
[28] |
Müller J, Nowoczin J and Schmitt H 2006 Thin Solid Films 496 364
|
[29] |
Chen D S, Yang J, Xu F, Zhou P H, Du H W, Shi J W, Yu Z S, Zhang Y H, Bartholomeus B and Ma Z Q 2013 Chin. Phys. B 22 018801
|
[30] |
Lazewski J, Neumann H, Parlinski K, Lippold G and Stanbery B 2003 Phys. Rev. B 68 144108
|
[31] |
Parkes J, Tomlinson R and Hampshire M 1973 J. Appl. Crystallogr. 6 414
|
[32] |
Spiess H W, Haeberlen U, Brandt G, Räuber A and Schneider J 1974 Phys. Status Solidi B 62 183
|
[33] |
Knight K 1992 Mater. Res. Bull. 27 161
|
[34] |
Lin Y M, Ji Z H and Zeng X H 2008 Journal of Yangzhou University 11 32 (in Chinese)
|
[35] |
Jiang F and Feng J 2006 Appl. Phys. Lett. 89 221920
|
[36] |
Belhadj M, Tadjer A, Abbar B, Bousahla Z, Bouhafs B and Aourag H 2004 Phys. Status Solidi B 241 2516
|
[37] |
Ni L H, Liu Y and Song C L 2008 Rare Metal Mater. Eng. 37 623 (in Chinese)
|
[38] |
Ekuma E C, Bagayoko D, Zhao G L, Franklin L and Wang J T 2010 AJP 3 119
|
[39] |
Pardo-Yissar V, Katz E, Wasserman J and Willner I 2003 J. Am. Chem. Soc. 125 622
|
[40] |
Rodríguez J A, Quiroga L, Camacho A and Baquero R 1996 Braz. J. Phys. 26 274
|
[41] |
Rodríguez J A, Quiroga L, Camacho A and Baquero R 1999 Phys. Rev. B 59 1555
|
[42] |
Siebentritt S, Papathanasiou N, Albert J and Lux-Steiner M C 2006 Appl. Phys. Lett. 88 151919
|
[43] |
Zhou Z, Zhao K, Wang Y M and Huang F Q 2011 J. Inorg. Mater. 26 113
|
[44] |
Rockett A 2012 Prog. Photovoltaics Res. Appl. 20 575
|
[45] |
Hinuma Y, Oba F, Kumagai Y and Tanaka I 2012 Phys. Rev. B 86 245433
|
[46] |
Gloeckler M and Sites J 2005 J. Phys. Chem. Solids 66 1891
|
[47] |
Birkmire R W 2001 Sol. Energ. Mater. Sol. C 65 17
|
[48] |
Shafarman W N, Klenk R and McCandless B E 1996 J. Appl. Phys. 79 7324
|
[49] |
Repins I, Contreras M A, Egaas B, DeHart C, Scharf J, Perkins C L, To B and Noufi R 2008 Prog. Photovoltaics Res. Appl. 16 235
|
[50] |
Oikkonen L, Ganchenkova M G, Seitsonen A P and Nieminen R 2011 J. Phys.: Condens. Matter 23 422202
|
[51] |
Domain C, Laribi S, Taunier S and Guillemoles J 2003 J. Phys. Chem. Solids 64 1657
|
[52] |
Wen L S 1991 The Physical Foundation of the Solid Material Interface (1st edn.) (Beijing: Science Press) p. 128 (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|