Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 067304    DOI: 10.1088/1674-1056/23/6/067304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Vacancy effect on the doping of silicon nanowires:A first-principles study

Liu Yang (刘阳)a, Liang Pei (梁培)a c, Shu Hai-Bo (舒海波)a, Cao Dan (曹丹)b, Dong Qian-Min (董前民)a, Wang Le (王乐)a
a College of Optical and Electronic Technology, ChinaJiliang University, Hangzhou 310018, China;
b College of Science, ChinaJiliang University, Hangzhou 310018, China;
c Department of Physics, South China University of Technology, Guangzhou 510640, China
Abstract  The influence of vacancy defect on the doping of silicon nanowires is systematically studied by the first-principles calculations. The atomic structures and electronic properties of vacancies and vacancy-boron (vacancy-phosphor) complexes in H-passivated silicon nanowire with a diameter of 2.3 nm are explored. The results of geometry optimization indicate that a central vacancy can exist stably, while the vacancy at the edge of the nanowire undergoes a local surface reconstruction, which results in the extradition of the vacancy out of the nanowire. Total-energy calculations indicate that the central vacancy tends to form a vacancy-dopant defect pair. Further analysis shows that n-type doping efficiency is strongly inhibited by the unintentional vacancy defect. In contrast, the vacancy defect has little effect on p-type doping. Our results suggest that the vacancy defect should be avoided during the growth and the fabrication of devices.
Keywords:  silicon nanowire      vacancy      doping      density-functional theory  
Received:  26 September 2013      Revised:  05 December 2013      Accepted manuscript online: 
PACS:  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
  73.21.Hb (Quantum wires)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61006051 and 61177050) and the Zhejiang Provincial Natural Science Foundation, China (Grant No. Y1110777).
Corresponding Authors:  Liang Pei     E-mail:  plianghust@126.com

Cite this article: 

Liu Yang (刘阳), Liang Pei (梁培), Shu Hai-Bo (舒海波), Cao Dan (曹丹), Dong Qian-Min (董前民), Wang Le (王乐) Vacancy effect on the doping of silicon nanowires:A first-principles study 2014 Chin. Phys. B 23 067304

[1] Lei L, Xu Q F, Hu M L, Sun H, Xiang G H and Zhou L B 2012 Acta Phys. Sin. 62 037301 (in Chinese)
[2] Song Z M, Zhao D X, Guo Z, Li B H, Zhang Z Z and Shen D Z 2011 Acta Phys. Sin. 61 052901 (in Chinese)
[3] Lu W, Mu Y M, Liu X Q, Chen X S, Wan M F, Shi G L, Qiao Y M, Shen S C, Fu Y and Willander M 1998 Phys. Rev. B 57 9787
[4] Goldberger J, Hochbaum A I, Fan R and Yang P D 2006 Nano Lett. 6 973
[5] Garnett E C and Yang P D 2008 J. Am. Chem. Soc. 130 9224
[6] Garnett E C and Yang P D 2010 Nano Lett. 10 1082
[7] Zhou X T, Hu J Q, Li C P, Ma D D D, Lee C S and Lee S T 2003 Chem. Phys. Lett. 369 220
[8] Patolsky F, Zheng G F and Lieber C M 2006 Nat. Protoc. 1 1711
[9] Xing Y J, Yu D P, Xi Z H and Xue Z Q 2002 Chin. Phys. 11 1047
[10] Wu Y, Cui Y, Huynh L, Barrelet C J, Bell D C and Lieber C M 2004 Nano Lett. 4 433
[11] Cui Y, Duan X F, Hu J T and Lieber C M 2000 J. Phys. Chem. B 104 5213
[12] Wang Y F, Lew K K, Ho T T, Pan L, Novak S W, Dickey E C, Redwing J M and Mayer T S 2005 Nano Lett. 5 2139
[13] Zheng G, Lu W, Jin S and Lieber C M 2004 Adv. Mater. 16 1890
[14] Hong K H, Kim J, Lee J H, Shin J and Chung U I 2010 Nano Lett. 10 1671
[15] Peelaers H, Partoens B and Peeters F M 2006 Nano Lett. 6 2781
[16] Ko Y J, Shin M, Lee S and Park K W 2000 J. Appl. Phys. 89 2001
[17] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[18] Perdew J P, Burke K and Wang Y 1996 Phys. Rev. B 54 16533
[19] Ekardt W 1984 Phys. Rev. B 29 1558
[20] Shu H B, Chen X S, Ding Z L, Dong R B and Lu W 2011 J. Phys. Chem. C 115 14449
[21] Durgun E, Akman N, Ataca C and Ciracl S 2007 Phys. Rev. B 76 245323
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[3] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[4] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[5] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[6] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[7] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[8] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[9] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[10] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[11] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[12] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[13] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[14] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[15] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
No Suggested Reading articles found!