CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Modulating magnetism of nitrogen-doped zigzag graphene nanoribbons |
Zhao Shang-Qian (赵尚骞)a, Lü Yan (吕燕)a, Lü Wen-Gang (吕文刚)a, Liang Wen-Jie (梁文杰)a, Wang En-Ge (王恩哥)b |
a Institute of Physics, Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing 100190, China;
b International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China |
|
|
Abstract We present a study of electronic properties of zigzag graphene nanoribbons (ZGNRs) substitutionally doped with nitrogen atoms at a single edge by first principle calculations. We find that the two edge states near the Fermi level separate due to the asymmetric nitrogen-doping. The ground states of these systems become ferromagnetic because the local magnetic moments along the undoped edges remain and those along the doped edges are suppressed. By controlling the charge-doping level, the magnetic moments of the whole ribbons are modulated. Proper charge doping leads to interesting half-metallic and single-edge conducting ribbons which would be helpful for designing graphene-nanoribbon-based spintronic devices in the future.
|
Received: 23 December 2013
Revised: 10 March 2014
Accepted manuscript online:
|
PACS:
|
73.22.Pr
|
(Electronic structure of graphene)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10834012 and 11374342), National Key Basic Research and Development Program of China (Grant No. 2009CB930700), and the Knowledge Innovation Foundation of the Chinese Academy of Sciences (Grant No. KJCX2-YW-W35). |
Corresponding Authors:
Lü Wen-Gang
E-mail: wglu@iphy.ac.cn
|
Cite this article:
Zhao Shang-Qian (赵尚骞), Lü Yan (吕燕), Lü Wen-Gang (吕文刚), Liang Wen-Jie (梁文杰), Wang En-Ge (王恩哥) Modulating magnetism of nitrogen-doped zigzag graphene nanoribbons 2014 Chin. Phys. B 23 067305
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[3] |
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[4] |
Terrones H, Lü R, Terrones M and Dresselhaus M S 2012 Rep. Prog. Phys. 75 062501
|
[5] |
Abergel D S L, Apalkov V, Berashevich J, Ziegler K and Chakraborty T 2010 Adv. Phys. 59 261
|
[6] |
Yazyev O V 2010 Rep. Prog. Phys. 73 056501
|
[7] |
Andrei E Y, Li G H and Du X 2012 Rep. Prog. Phys. 75 056501
|
[8] |
Han M Y, Özyilmaz B, Zhang Y B and Kim P 2007 Phys. Rev. Lett. 98 206805
|
[9] |
Li X L, Wang X R, Zhang L, Lee S and Dai H J 2008 Science 319 1229
|
[10] |
Wang X R, Ouyang Y J, Li X L, Wang H L, Guo J and Dai H J 2008 Phys. Rev. Lett. 100 206803
|
[11] |
Shi Z W, Yang R, Zhang L C, Wang Y, Liu D H, Shi D X, Wang E G and Zhang G Y 2011 Adv. Mater. 23 3061
|
[12] |
Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
|
[13] |
Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
|
[14] |
Wimmer M, Adagideli İ, Berber S, Tománek D and Richter K 2008 Phys. Rev. Lett. 100 177207
|
[15] |
Wang B, Wang J and Guo H 2009 Phys. Rev. B 79 165417
|
[16] |
Wang X R, Li X L, Zhang L, Yoon Y K, Weber P K, Wang H L, Guo J and Dai H J 2009 Science 324 768
|
[17] |
Biel B, Blase X, Triozon F and Roche S 2009 Phys. Rev. Lett. 102 096803
|
[18] |
Zheng X H, Wang X L, Abtew T A and Zeng Z 2010 J. Phys. Chem. C 114 4190
|
[19] |
Li Y F, Zhou Z, Shen P W and Chen Z F 2009 ACS Nano 3 1952
|
[20] |
Huang B, Liu F, Wu J, Gu B L and Duan W H 2008 Phys. Rev. B 77 153411
|
[21] |
Cruz-Silva E, Barnett Z M, Sumpter B G and Meunier V 2011 Phys. Rev. B 83 155445
|
[22] |
Yu S S, Zheng W T, Wen Q B and Jiang Q 2008 Carbon 46 537
|
[23] |
Jiang J, Turnbull J, Wen W C, Boguslawski P and Bernholc J 2012 J. Chem. Phys. 136 014702
|
[24] |
Xiao J, Yang Z X, Xie W T, Xiao L X, Xu H and Ouyang F P 2012 Chin. Phys. B 21 027102
|
[25] |
Martins T B, Miwa R H, da Silva A J R and Fazzio A 2007 Phys. Rev. Lett. 98 196803
|
[26] |
Martins T B, da Silva A J R, Miwa R H and Fazzio A 2008 Nano Lett. 8 2293
|
[27] |
Edward D M and Katsnelson M I 2006 J. Phys.: Condens. Matter 18 7209
|
[28] |
Chen J Z, Vanin M, Hu Y B and Guo H 2012 Phys. Rev. B 86 075146
|
[29] |
Li Y, Zhang W, Morgenstern M and Mazzarello R 2013 Phys. Rev. Lett. 110 216804
|
[30] |
Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J and Kelly P J 2008 Phys. Rev. Lett. 101 026803
|
[31] |
Khomyakov P A, Giovannetti G, Rusu P C, Brocks G, van den Brink J and Kelly P J 2009 Phys. Rev. B 79 195425
|
[32] |
Shim J, Lui C H, Ko T Y, Yu Y J, Kim P, Heinz T F and Ryu S 2012 Nano Lett. 12 648
|
[33] |
Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P and Shepard K L 2008 Nat. Nanotech. 3 654
|
[34] |
Xia F N, Farmer D B, Lin Y M and Avouris P 2010 Nano Lett. 10 715
|
[35] |
Liao L, Lin Y C, Bao M Q, Cheng R, Bai J W, Liu Y, Qu Y Q, Wang K L, Huang Y and Duan X F 2010 Nature 467 305
|
[36] |
Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
|
[37] |
Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
|
[38] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[39] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[40] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[41] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[42] |
Momma K and Izumi F 2008 J. Appl. Crystallogr 41 653
|
[43] |
Blundell S 2001 Magnetism in Condensed Matter (Oxford Master Series in Condensed Matter Physics) p. 145
|
[44] |
Kunstmann J, Özdoğan C, Quandt A and Fehske H 2011 Phys. Rev. B 83 045414
|
[45] |
Lei S L, Li B, Huang J, Li Q X and Yang J L 2013 Chin. Phys. Lett. 30 077502
|
[46] |
Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2006 Science 313 951
|
[47] |
Feng W, Lei S L, Li Q X and Zhao A D 2011 J. Phys. Chem. C 115 24858
|
[48] |
Chen J H, Li L, Cullen W G, Williams E D and Fuhrer M S 2011 Nat. Phys. 7 535
|
[49] |
Nair R R, Tsai I L, Sepioni M, Lehtinen O, Keinonen J, Krasheninnikov A V, Castro Neto A H, Katsnelson M I, Geim A K and Grigorieva I V 2013 Nat. Commun. 4 2010
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|