Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 066501    DOI: 10.1088/1674-1056/23/6/066501
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Phase transition and thermal expansion property of Cr2-xZr0.5xMg0.5xMo3O12 solid solution

Song Wen-Bo (宋文博)a, Wang Jun-Qiao (王俊俏)a, Li Zhi-Yuan (李志远)a, Liu Xian-Sheng (刘献省)a, Yuan Bao-He (袁保合)a b, Liang Er-Jun (梁二军)a
a School of Physical Science & Engineering and Key Laboratory of Materials Physics of Ministryof Education of China, Zhengzhou University, Zhengzhou 450052, China;
b North China University of Water Resources and Electric Power, Zhengzhou 450011, China
Abstract  Compounds with the formula Cr2-xZr0.5xMg0.5xMo3O12 (x = 0.0, 0.3, 0.5, 0.9, 1.3, 1.5, 1.7, 1.9) are synthesized, and the effects of Zr4 + and Mg2+ co-incorporation on the phase transition, thermal expansion, and Raman mode are investigated. It is found that Cr2-xZr0.5xMg0.5xMo3O12 crystallize into monoclinic structures for x ≤ 1.3 and orthorhombic structures for x ≥ 1.5 at room temperature. The phase transition temperature from a monoclinic to an orthorhombic structure of Cr2Mo3O12 can be reduced by the partial substitution of (ZrMg)6+ for Cr3+. The overall linear thermal expansion coefficient decreases with the increase of the (ZrMg)6+ content in an orthorhombic structure sample. The co-incorporation of Zr4 + and Mg2+ in the lattice results in the occurrence of new Raman modes and the hardening of the symmetric vibrational modes, which are attributed to the MoO4 tetrahedra sharing corners with ZrO6/MgO6 octahedra and to the strengthening of Mo-O bonds due to less electronegativities of Zr4+ and Mg2+ than Cr3+, respectively.
Keywords:  negative thermal expansion material      phase transition      Raman spectroscopy  
Received:  10 October 2013      Revised:  27 December 2013      Accepted manuscript online: 
PACS:  65.40.De (Thermal expansion; thermomechanical effects)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  78.30.-j (Infrared and Raman spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974183 and 11104252), the Science Fund of the Ministry of Education of China (Grant No. 20114101110003), the Fund for Science & Technology Innovation Team of Zhengzhou City, China (Grant No. 112PCXTD337), and the Postdoctoral Research Sponsorship in Henan Province, China (Grant No. 2011002).
Corresponding Authors:  Liang Er-Jun     E-mail:  ejliang@zzu.edu.cn

Cite this article: 

Song Wen-Bo (宋文博), Wang Jun-Qiao (王俊俏), Li Zhi-Yuan (李志远), Liu Xian-Sheng (刘献省), Yuan Bao-He (袁保合), Liang Er-Jun (梁二军) Phase transition and thermal expansion property of Cr2-xZr0.5xMg0.5xMo3O12 solid solution 2014 Chin. Phys. B 23 066501

[1] Mary T A, Evans J S O, Vogt T and Sleight A W 1996 Science 272 90
[2] Perottoni C A and Da Jornada J A H 1998 Science 280 886
[3] Liang E J 2010 Recent Pat. Mater. Sci. 3 106
[4] Chatterji T, Hansen T C, Brunelli M and Henry P F 2009 Appl. Phys. Lett. 94 241902
[5] Amos T G, Yokochi A and Sleight A W 1998 J. Solid State Chem. 141 303
[6] Yuan H L, Yuan B H, Li F and Liang E J 2012 Acta Phys. Sin. 61 226502 (in Chinese)
[7] Kennedy B J, Kubota Y and Kato K 2005 Solid State Commun. 136 177
[8] Evans J S O, Mary T A and Sleight A W 1998 J. Solid State Chem. 137 148
[9] Liang E J, Huo H L, Wang Z, Chao M J and Wang J P 2009 Solid State Sci. 11 139
[10] Li Q J, Yuan B H, Song W B, Liang E J and Yuan B 2012 Chin. Phys. B 21 046501
[11] Wu M M, Peng J, Zu Y, Liu R D, Hu Z B, Liu Y T and Chen D F 2012 Chin. Phys. B 21 116102
[12] Liu F S, Chen X P, Xie H X, Ao W Q and Li J Q 2010 Acta Phys. Sin. 59 3350 (in Chinese)
[13] Suzuki T and Omote A 2004 J. Am. Ceram. Soc. 87 1365
[14] Gindhart A M, Lind C and Green M 2008 J. Mater. Res. 23 210
[15] Marinkovic B A, Jardim P M, Ari M, de Avillez R R, Rizzo F and Ferreira F F 2008 Phys. Status Solid B 245 2514
[16] Kimberly J M, Michel B J, Mary A W and Bojan A M 2012 Solid State Commun. 152 1748
[17] Song W B, Liang E J, Liu X S, Li Z Y, Yuan B H and Wang J Q 2013 Chin. Phys. Lett. 30 126502
[18] Liang E J, Huo H L, Wang J P and Chao M J 2008 J. Phys. Chem. C 112 6577
[19] Ari M, Jardim P M, Marinkovic B A, Rizzo F and Ferreira F F 2008 J. Solid State Chem. 181 1472
[20] Tyagi A K, Achary S N and Mathews M D 2002 J. Alloys Compd. 339 207
[21] Mary T A and Sleight A W 1999 J. Mater. Res. 14 912
[22] Kimberly J M, Carl P R, Mario B, Bojan A M, Luciana P and Mary A W 2013 J. Am. Ceram. Soc. 96 561
[23] Suzuki T and Omote A 2006 J. Am. Ceram. Soc. 89 691
[24] Li Z Y, Song W B and Liang E J 2011 J. Phys. Chem. C 115 17806
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[3] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[4] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[7] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[8] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[12] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[13] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[14] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[15] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
No Suggested Reading articles found!