Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 066301    DOI: 10.1088/1674-1056/23/6/066301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Electronic structures and energy band properties of Be- and S-doped wurtzite ZnO

Zheng Shu-Wen (郑树文), Fan Guang-Han (范广涵), He Miao (何苗), Zhang Tao (张涛)
Laboratory of Nanophotonic Functional Materials and Devices, Institute of Opto-electronic Materials and Technology, South China Normal University, Guangzhou 510631, China
Abstract  The energy band properties, density of states, and band alignment of the BexZn1-xO1-ySy alloy (Be- and S-doped wurtzite ZnO) are investigated by the first-principles method. BexZn1-xO1-ySy alloy is a direct band gap semiconductor, the valence band maximum (VBM) and the conduction band minimum (CBM) of BexZn1-xO1-ySy are dominated by S 3p and Zn 4s states, respectively. The band gap and lattice constant of BexZn1-xO1-ySy alloy can be modulated by changing the doped content values x and y. With the increase in Be content value x in the BexZn1-xO1-ySy alloy, the band gap increases and the lattice constant reduces, but the situation is just the opposite when increasing the S content value y in the BexZn1-xO1-ySy alloy. Because the lattice constant of Be0.375Zn0.625O0.75S0.25 alloy is well matched with that of ZnO and its energy gap is large compared with that of ZnO, so the Be0.375Zn0.625O0.75S0.25 alloy is suitable for serving as the blocking material for a high-quality ZnO-based device.
Keywords:  first-principle      BexZn1-xO1-ySy alloy      electronic structure      band gap modulation  
Received:  11 November 2013      Revised:  22 February 2014      Accepted manuscript online: 
PACS:  63.20.dk (First-principles theory)  
  73.20.At (Surface states, band structure, electron density of states)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Be (Transition metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61078046), the Special Funds for Provincial Strategic and Emerging Industries Projects of Guangdong Province, China (Grant No. 2012A080304016), and the Youth Foundation of South China Normal University, China (Grant No. 2012KJ018).
Corresponding Authors:  Zheng Shu-Wen     E-mail:  LED@scnu.edu.cn

Cite this article: 

Zheng Shu-Wen (郑树文), Fan Guang-Han (范广涵), He Miao (何苗), Zhang Tao (张涛) Electronic structures and energy band properties of Be- and S-doped wurtzite ZnO 2014 Chin. Phys. B 23 066301

[1] Kligshirn C 1975 Phys. Status Solidi B 71 547
[2] Park Y S, Litton C W, Collins T C and Reynolds D C 1966 Phys. Rev. 143 512
[3] Thoms D G 1960 J. Phys. Chem. Sol. 15 86
[4] Ryu Y R, Lee T S and White H W 2003 Appl. Phys. Lett. 83 87
[5] Sanati M, Hart G L W and Zunger A 2003 Phys. Rev. B 68 155210
[6] Fan X F, Sun H D, Shen Z X, Kuo J L and Lu Y M 2008 J. Phys.: Condens. Matter 20 235221
[7] Makion T, Segawa Y, Ksaesdski M, Ohtomo A, Shiroki R, Tamura K, Yasuda T and Koinuma H 2001 Appl. Phys. Lett. 78 1237
[8] Ryu Y R, Lee T S, Lubguban J A, Corman A B, White H W, Leem H J, Han M S, Park Y S, Youn C J and Kim W J 2006 Appl. Phys. Lett. 88 052103
[9] Gan C K, Fan X F and Kuo J L 2010 Comput. Mater. Sci. 49 S29
[10] Su X Y, Si P P, Hou Q Y, Kong X L and Cheng W 2009 Physica B: Condens. Matter 404 1794
[11] Shi H L and Duan Y 2008 Eur. Phys. J. B 66 439
[12] Yang C, Li X M, Gu W D, Yu W D, Gao X D and Zhang Y W 2008 Appl. Phys. Lett. 93 112114
[13] Zheng S W, Fan G H, Zhang Y, He M, Li S T and Zhang T 2012 Acta Phys. Sin. 61 227101 (in Chinese)
[14] Ramasubramanian S, Thangavel R, Rajagopalan M and Kumar J 2009 J. Alloys Compd. 479 414
[15] Shannon R D 1976 Acta Cryst. A 32 751
[16] Fan X F, Shen Z X, Lu Y M and Kuo J L 2009 New J. Phys. 11 093008
[17] Meyer B K, Polity A, Farangis B, He Y, Hasselkamp D, Krämer T and Wang C 2004 Appl. Phys. Lett. 85 4929
[18] Segall M D, Lindan P, Probet M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[19] Perdew J, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[20] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[21] Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768
[22] Yang Z H, Zheng J H, Zhai H J, Yang L L, Liu L and Gao M 2009 Cryst. Res. Technol. 44 619
[23] Schleife A, Fuchs F, Furthmuller J and Bechstedt F 2006 Phys. Rev. B 73 245212
[24] Tang X, Lü H F, Ma C Y, Zhao J J and Zhang Q Y 2008 Acta Phys. Sin. 57 1066 (in Chinese)
[25] Shi L B, Li R B Cheng S and Li M B 2009 Acta Phys. Sin. 58 6446 (in Chinese)
[26] Yoo Y Z, Jin Z W, Chikyow T, Fukumura T, Kawasaki M and Koinuma H 2002 Appl. Phys. Lett. 81 3798
[27] Godby R W, Schluter M and Sham L J 1986 Phys. Rev. Lett. 56 2415
[28] Fan X F, Zhu Z, Ong Y S, Lu Y M, Shen Z X and Kuo J L 2007 Appl. Phys. Lett. 91 121121
[29] Xia J B, Zhu B F and Huang K 1995 Semiconductor Superlattice Physics (Shanghai: Shanghai Science and Technology Press) p. 19
[30] Tang X, Lu H F, Zhao J J and Zhang Q Y 2010 J. Phys. Chem. Solids 71 336
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[6] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[11] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[12] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[13] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[14] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[15] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
No Suggested Reading articles found!