Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 056104    DOI: 10.1088/1674-1056/23/5/056104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Role of helium in the sliding and mechanical properties of a vanadium grain boundary:A first-principles study

Zhou Hong-Bo (周洪波), Jin Shuo (金硕), Zhang Ying (张颖), Shu Xiao-Lin (舒小林), Niu Liang-Liang (牛亮亮)
Department of Physics, Beihang University, Beijing 100191, China
Abstract  The effects of helium (He) on the sliding and mechanical properties of a vanadium (V) Σ5(310)/[001] grain boundary (GB) have been investigated using a first-principles method. It has been found that He was energetically favorable sitting at the GB region with a segregation energy of -0.27 eV, which was attributed to the special atomic configurations and charge density distributions of the GB. The maximal sliding energy barrier of the He-doped GB was calculated to be 1.73 J/m2, ~ 35% larger than that of the clean GB. This suggested that the presence of He would hinder the V GB mobility. Based on the thermodynamic criterion, the total energy calculations indicated that the embrittlement of V GB would be enhanced by He segregation.
Keywords:  helium      vanadium grain boundary      sliding properties      mechanical properties  
Received:  23 July 2013      Revised:  10 January 2014      Accepted manuscript online: 
PACS:  61.80.Az (Theory and models of radiation effects)  
  71.20.Be (Transition metals and alloys)  
  61.72.Mm (Grain and twin boundaries)  
  62.20.F- (Deformation and plasticity)  
Fund: Project supported by the National Magnetic Confinement Fusion Program of China (Grant No. 2013GB109002).
Corresponding Authors:  Zhou Hong-Bo     E-mail:  hbzhou@buaa.edu.cn
About author:  61.80.Az; 71.20.Be; 61.72.Mm; 62.20.F-

Cite this article: 

Zhou Hong-Bo (周洪波), Jin Shuo (金硕), Zhang Ying (张颖), Shu Xiao-Lin (舒小林), Niu Liang-Liang (牛亮亮) Role of helium in the sliding and mechanical properties of a vanadium grain boundary:A first-principles study 2014 Chin. Phys. B 23 056104

[1] Causey R, Wilson K, Venhaus T and Wampler W R 1999 J. Nucl. Mater. 266 467
[2] Gold R E and Bajaj R 1984 J. Nucl. Mater. 122 759
[3] Smith D L, Chung H M, Matsui H and Rowcliffe A F 1998 Fusion Eng. Des. 41 7
[4] Dyomina E V, Fenici P, Kolotov V P and Zucchetti M 1998 J. Nucl. Mater. 258 1784
[5] Nagasaka T, Muroga T, Fukumoto K C, Watanabe H, Grossbeck M L and Chen J 2006 Nucl. Fusion 46 618
[6] Shyrokov V V, Vasyliv C B and Shyrokov O V 2009 J. Nucl. Mater. 394 114
[7] Steiner D 1974 Nucl. Fusion 14 33
[8] Gilbert M R and Sublet J Ch 2011 Nucl. Fusion 51 043005
[9] Barnes R S 1965 Nature 206 1307
[10] Ullmaier H 1984 Nucl. Fusion 24 1039
[11] Lejcek P and Hofmann S 1995 Crit. Rev. Sol. State Mater. Sci. 20 1
[12] Briant C L and Messmer R P 1982 J. Phys. 43 255
[13] Satou M, Koide H, Hasegawa A, Abe K, Kayano H and Matsui H 1996 J. Nucl. Mater. 233 447
[14] Fedorov A V, van Veen A and Ryazanov A I 1996 J. Nucl. Mater. 233 385
[15] Fedorov A V, Buitenhuis G P, Veen A V, Ryazanov A I, Evans J H, Witzenburg W V and Westerduin K T 1996 J. Nucl. Mater. 227 312
[16] Ryazanov A I, Manichev V M and W V Witzenburg 1996 J. Nucl. Mater. 227 304
[17] Ryazanov A I, Matsui H and Kazaryan A V 1999 J. Nucl. Mater. 271 356
[18] Hoelzer D T and Rowcliffe A F 2000 Proceedings of 5th IEA and JUPITER Joint Workshop on Vanadium Alloys for Fusion Applications, Tokyo, p. 43
[19] Valiev R Z, Khairullin V G and Sheikh-Ali A D 1991 Structure and Property Relationships for Interfaces, edited by Walter J L, King A H and Tangri K (ASM International, Metals Park, OH), p. 309
[20] Martin G 1998 Curr. Opin. Solid State Mater. Sci. 3 552
[21] Zinkle S J and Singh B N 2000 J. Nucl. Mater. 283 306
[22] Hampel K, Vvedensky D D and Crampin S 1993 Phys. Rev. B 47 4810
[23] Campañá C, Boyle K P and Miller R E 2008 Phys. Rev. B 78 134114
[24] Zhang L, Zhang Y, Geng W T and Lu G H 2012 Europhys. Lett. 98 17001
[25] Campbell G H, Belak J and Moriarty J A 1999 Acta Mater. 47 3977
[26] Janisch R and Elsässer C 2003 Phys. Rev. B 67 224101
[27] Janisch R and Elsässer C 2008 Phys. Rev. B 77 094118
[28] Campbell G H, Foiles S M, Gumbsch P, Rühle M and King W E 1993 Phys. Rev. Lett. 70 449
[29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[31] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[32] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[33] Bolef D I, Smith R E and Miller J G 1971 Phys. Rev. B 3 4100
[34] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[35] Zhou H B, Jin S, Shu X L, Zhang Y, Lu G H and Liu F 2011 Europhys. Lett. 96 66001
[36] Zhang P B, Zhao J J, Qin Y and Wen B 2011 J. Nucl. Mater. 419 1
[37] Puska M J, Nieminen R M and Manninen M 1981 Phys. Rev. B 24 3037
[38] Zhang S J, Kontsevoi O Y, Freeman A J and Olson G B 2011 Acta Mater. 59 6155
[39] Tian Z X, Yan J X, Hao W and Xiao W 2011 J. Phys.: Condens. Matter 23 015501
[40] Lu G and Kioussis N 2001 Phys. Rev. B 64 024101
[41] Lu G H, Deng S, Wang T, Kohyama M and Yamamoto R 2004 Phys. Rev. B 69 134106
[42] Chen Z Z and Wang C Y 2006 Chin. Phys. 15 604
[43] Wang Y B, Zhang G, Liu M J, Chen X L and Chen J 2009 Chin. Phys. B 18 1181
[44] Rice J R 1992 J. Mech. Phys. Solids 40 239
[45] Fu C L 1990 J. Mater. Res. 5 971
[46] Rice J R and Thomson R 1974 Philos. Mag. 29 73
[47] Gong H R 2009 Intermetallics 17 562
[48] Lu G, Orlikowski D, Park I, Politano O and Kaxiras E 2002 Phys. Rev. B 65 064102
[49] Yuasa M, Nishihara D, Mabuchi M and Chino Y 2012 J. Phys.: Condens. Matter 24 085701
[50] Zhang Q, Fan T W, Fu L, Tang B Y, Peng L M and Ding W J 2012 Intermetallics 29 21
[51] Rice J R, Beltz G E and Sun Y 1992 Topics in Fracture and Fatigue, edited by Argon A S (Berlin: Springer)
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Fine and hyperfine structures of pionic helium atoms
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2023, 32(2): 023601.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[5] Helium bubble formation and evolution in NiMo-Y2O3 alloy under He ion irradiation
Awen Liu(刘阿文), Hefei Huang(黄鹤飞), Jizhao Liu(刘继召), Zhenbo Zhu(朱振博), and Yan Li(李燕). Chin. Phys. B, 2022, 31(4): 046102.
[6] Spatial characteristics of nanosecond pulsed micro-discharges in atmospheric pressure He/H2O mixture by optical emission spectroscopy
Chuanjie Chen(陈传杰), Zhongqing Fang(方忠庆), Xiaofang Yang(杨晓芳), Yongsheng Fan(樊永胜), Feng Zhou(周锋), and Rugang Wang(王如刚). Chin. Phys. B, 2022, 31(2): 025204.
[7] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[8] Development of a cryogen-free dilution refrigerator
Zhongqing Ji(姬忠庆), Jie Fan(樊洁), Jing Dong(董靖), Yongbo Bian(边勇波), and Zhi-Gang Cheng(程智刚). Chin. Phys. B, 2022, 31(12): 120703.
[9] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[10] Helium-hydrogen synergistic effects on swelling in in-situ multiple-ion beams irradiated steels
Haocheng Liu(刘昊成), Jia Huang(黄嘉), Liuxuan Cao(曹留煊), Yue Su(苏悦), Zhiying Gao(高智颖), Pengfei Ma(马鹏飞), Songqin Xia(夏松钦), Wei Ge(葛伟), Qingyuan Liu(刘清元), Shuang Zhao(赵双), Yugang Wang(王宇钢), Jinchi Huang(黄金池), Zhehui Zhou(周哲辉), Pengfei Zheng(郑鹏飞), and Chenxu Wang(王晨旭). Chin. Phys. B, 2021, 30(8): 086106.
[11] Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation
Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏). Chin. Phys. B, 2021, 30(8): 086108.
[12] In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing
Yi-Peng Li(李奕鹏), Guang Ran(冉广), Xin-Yi Liu(刘歆翌), Xi Qiu(邱玺), Qing Han(韩晴), Wen-Jie Li(李文杰), and Yi-Jia Guo(郭熠佳). Chin. Phys. B, 2021, 30(8): 086109.
[13] Evolution of helium bubbles in nickel-based alloy by post-implantation annealing
Rui Zhu(朱睿), Qin Zhou(周钦), Li Shi(史力), Li-Bin Sun(孙立斌), Xin-Xin Wu(吴莘馨), Sha-Sha Lv(吕沙沙), and Zheng-Cao Li(李正操). Chin. Phys. B, 2021, 30(8): 086102.
[14] HeTDSE: A GPU based program to solve the full-dimensional time-dependent Schrödinger equation for two-electron helium subjected to strong laser fields
Xi Zhao(赵曦), Gangtai Zhang(张刚台), Tingting Bai(白婷婷), Jun Wang(王俊), and Wei-Wei Yu(于伟威). Chin. Phys. B, 2021, 30(7): 073201.
[15] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
No Suggested Reading articles found!