Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 047306    DOI: 10.1088/1674-1056/23/4/047306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enhanced light absorption of silicon in the near-infrared band by designed gold nanostructures

Liu Ju (刘菊), Zhong Xiao-Lan (钟晓岚), Li Zhi-Yuan (李志远)
Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  A scheme to enhance near-infrared band absorption of a Si nanoparticle by placing the Si nanoparticle into a designed gold nanostructure is proposed. Three-dimensional (3D) finite-difference time-domain simulations are employed to calculate the absorption spectrum of the Si nanostructure and maximize it by generating alternate designs. The results show that in the near-infrared region over 700 nm, the absorption of a pure Si nanoparticle is very low, but when the same nanoparticle is placed within an optimally designed gold nanostructure, its absorption cross section can be enhanced by more than two orders of magnitude in the near-infrared band.
Keywords:  surface plasmon resonance      near-infrared      silicon absorption      finite-difference time-domain optimization  
Received:  21 October 2013      Revised:  05 December 2013      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Project supported by the National Key Basic Research and Development Program of China (Grant No. 2013CB632704) and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. Y1 V2013L11).
Corresponding Authors:  Li Zhi-Yuan     E-mail:  lizy@aphy.iphy.ac.cn
About author:  73.20.Mf; 78.67.Bf; 78.20.Bh

Cite this article: 

Liu Ju (刘菊), Zhong Xiao-Lan (钟晓岚), Li Zhi-Yuan (李志远) Enhanced light absorption of silicon in the near-infrared band by designed gold nanostructures 2014 Chin. Phys. B 23 047306

[1] Dubbs T, Kroeger W, Nissen T, Pulliam T, Roberts D, Rowe W A, Sadrozinski H F W, Seiden A, Thomas B, Webster A and Alers G 1999 IEEE Trans. Nucl. Sci. 46 839
[2] Huang Y P, Velev V and Kumar P 2013 Opt. Lett. 38 2119
[3] Yang J, Banerjee A and Guha S 1997 Appl. Phys. Lett. 70 2975
[4] Tsu D V, Chao B S, Ovshinsky S R, Guha S and Yang J 1997 Appl. Phys. Lett. 71 1317
[5] Cui Y and Lieber C M 2001 Science 291 851
[6] Kovalev D and Fujii M 2005 Adv. Mater. 17 2531
[7] Zhang X M, Neiner D, Wang S Z, Louie A Y and Kauzlarich S M 2007 Nanotechnology 18 095601
[8] Jakubek J 2009 J. Instrum. 4 P03013
[9] Adam W et al. 2000 Nucl. Instrum. Methods Phys. Res. A 453 141
[10] Love S A, Marquis B J and Haynes C L 2008 Appl. Spectrosc. 62 346a
[11] Chen Y H, Fu J X and Li Z Y 2011 Opt. Express 19 23908
[12] Homola J, Yee S S and Gauglitz G 1999 Sens. Actuators B Chem. 54 3
[13] Ferry V E, Sweatlock L A, Pacifici D and Atwater H A 2008 Nano Lett. 8 4391
[14] Zheludev N I, Prosvirnin S L, Papasimakis N and Fedotov V A 2008 Nat. Photonics 2 351
[15] Palomba S and Novotny L 2008 Phys. Rev. Lett. 101 056802
[16] Loo C, Lowery A, Halas N J, West J and Drezek R 2005 Nano Lett. 5 709
[17] Zhong X L and Li Z Y 2012 J. Phys. Chem. C 116 21547
[18] Li Z Y 2012 Front. Phys. 7 601
[19] Novotny L and Van Hulst N 2011 Nat. Photonics 5 83
[20] Tang L, Kocabas S E, Latif S, Okyay A K, Ly-Gagnon D S, Saraswat K C and Miller D A B 2008 Nat. Photonics 2 226
[21] Cao L Y, Park J S, Fan P Y, Clemens B and Brongersma M L 2010 Nano Lett. 10 1229
[22] Cubukcu E, Kort E A, Crozier K B and Capasso F 2006 Appl. Phys. Lett. 89 093120
[23] Pillai S, Catchpole K R, Trupke T and Green M A 2007 J. Appl. Phys. 101 093105
[24] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J and Van Duyne R P 2008 Nat. Mater. 7 442
[25] Schuller J A, Barnard E S, Cai W S, Jun Y C, White J S and Brongersma M L 2010 Nat. Mater. 9 193
[26] Hoppener C and Novotny L 2008 Nano Lett. 8 642
[27] Van Zanten T S, Lopez-Bosque M J and Garcia-Parajo M F 2010 Small 6 270
[28] Thompson A B and Sevick-Muraca E M 2003 J. Biomed. Opt. 8 111
[29] Siddiqi M A, Kilduff G M and Gearhart J D 2003 J. Microsc-Oxford 212 132
[30] Yee K S 1966 IEEE Trans. Antennas Propag. 14 302
[31] Taflove A 1995 Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3nd edn. (Norwood, MA: Artech House) pp. 475-506
[32] Palik E D 1985 Handbook of Optical Constants of Solids (Orlando: Academic Press) pp. 547-569
[33] Liu N, Tang M L, Hentschel M, Giessen H and Alivisatos A P 2011 Nat. Mater. 10 631
[34] Dong J, Qu S X, Zhang Z L, Liu M C, Liu G N, Yan X Q and Zheng H R 2012 J. Appl. Phys. 111 093101
[35] Davis T J, Hentschel M, Liu N and Giessen H 2012 ACS Nano 6 1291
[36] Ibrahim I A, Mivelle M, Grosjean T, Allegre J T, Burr G W and Baida F I 2010 Opt. Lett. 35 2448
[37] Jin N and Rahmat-Samii Y 2005 IEEE Trans. Antennas Propag. 53 3459
[38] Burr G W and Farjadpour A 2005 Proc. SPIE: Conference on Photonic Crystal Materials and Devices III, January 24-27, 2005, San Jose, CA, USA, p. 336
[39] Robinson J and Rahmat-Samii Y 2004 IEEE Trans. Antenn. Propag. 52 397
[40] Trelea I C 2003 Inf. Process. Lett. 85 317
[41] Mutitu J G, Shi S Y, Chen C H, Creazzo T, Barnett A, Honsberg C and Prather D W 2008 Opt. Express 16 15238
[42] Shokooh-Saremi M and Magnusson R 2010 Opt. Lett. 35 1121
[43] Magnusson R, Shokooh-Saremi M and Johnson E G 2010 Opt. Lett. 35 2472
[1] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[2] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[5] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[6] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[7] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[8] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[9] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[10] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[11] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[12] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[13] Cascaded dual-channel fiber SPR temperature sensor based on liquid and solid encapsulations
Yong Wei(魏勇), Lingling Li(李玲玲), Chunlan Liu(刘春兰), Jiangxi Hu(胡江西), Yudong Su(苏于东), Ping Wu(吴萍), and Xiaoling Zhao(赵晓玲). Chin. Phys. B, 2021, 30(10): 100701.
[14] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[15] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
No Suggested Reading articles found!