Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 040703    DOI: 10.1088/1674-1056/23/4/040703
GENERAL Prev   Next  

Theoretical analysis of stack gas emission velocity measurement by optical scintillation

Yang Yang (杨阳), Dong Feng-Zhong (董凤忠), Ni Zhi-Bo (倪志波), Pang Tao (庞涛), Zeng Zong-Yong (曾宗泳), Wu Bian (吴边), Zhang Zhi-Rong (张志荣)
Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  Theoretical analysis for an online measurement of the stack gas flow velocity based on the optical scintillation method with a structure of two parallel optical paths is performed. The causes of optical scintillation in a stack are first introduced. Then, the principle of flow velocity measurement and its mathematical expression based on cross correlation of the optical scintillation are presented. The field test results show that the flow velocity measured by the proposed technique in this article is consistent with the value tested by the Pitot tube. It verifies the effectiveness of this method. Finally, by use of the structure function of logarithmic light intensity fluctuations, the theoretical explanation of optical scintillation spectral characteristic in low frequency is given. The analysis of the optical scintillation spectrum provides the basis for the measurement of the stack gas flow velocity and particle concentration simultaneously.
Keywords:  optical scintillation      cross correlation      flow velocity      spectrum  
Received:  14 July 2013      Revised:  17 September 2013      Accepted manuscript online: 
PACS:  07.88.+y (Instruments for environmental pollution measurements)  
  07.60.-j (Optical instruments and equipment)  
  42.25.Dd (Wave propagation in random media)  
  92.60.Sz (Air quality and air pollution)  
Fund: Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2014BAC17B03) and the National Natural Science Foundation of China (Grant No. 11204320).
Corresponding Authors:  Dong Feng-Zhong     E-mail:  fzdong@aiofm.ac.cn
About author:  07.88.+y; 07.60.-j; 42.25.Dd; 92.60.Sz

Cite this article: 

Yang Yang (杨阳), Dong Feng-Zhong (董凤忠), Ni Zhi-Bo (倪志波), Pang Tao (庞涛), Zeng Zong-Yong (曾宗泳), Wu Bian (吴边), Zhang Zhi-Rong (张志荣) Theoretical analysis of stack gas emission velocity measurement by optical scintillation 2014 Chin. Phys. B 23 040703

[1] Klopfenstein J R 1998 ISA Trans. 37 257
[2] Sadeghi M M, Peterson R L and Najafi K 2013 J. Micromech. Microeng. 23 085017
[3] Christian W R, Delcher R C, Chen T, Khoshnevisan M, Liescheski P B and Metcalf M A 2012 U.S. Patent Application 13718, 651 [2012-12-18]
[4] Du C, Xu M Y and Mi J C 2010 Acta Phys. Sin. 59 6331 (in Chinese)
[5] Xu M Y, Du C and Mi J C 2011 Acta Phys. Sin. 60 034701 (in Chinese)
[6] Maru K and Hata T 2012 Appl. Opt. 51 8177
[7] Chen A S, Hao J M, Zhou Z P and He K B 2000 Opt. Lett. 25 689
[8] Chen A S, Hao J M and Zhou Z P 2001 China Patent CN1279394 [2001-01-10]
[9] Wang T I and Clifford S F 1975 Opt. Soc. Am. 65 147
[10] Chen J and Shen J Q 2004 J. Shanghai Univ. Technol. 26 503
[11] Yuan Z F 2003 Therm. Power Gener. 3 14
[12] Wang T I 2003 U.S. Patent 6, 611, 319 [2003-8-26]
[13] Liu H L 2006 "The Measurements of Stack Gas Flow Velocity and Particulate Concentration by Optical Scintillation" (Ph. D. Thesis) (Hefei: Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) (in Chinese)
[14] Liu W Q, Liu H L, Zeng Z Y and Jiang Y 2006 Chin. Phys. 15 1777
[15] Rao R Z 2005 Light Propagation in the Turbulent Atmosphere (Hefei: Anhui Scince & Technology Publishing House) p. 190 (in Chinese)
[16] Qian X M, Zhu W Y and Rao R Z 2013 Acta Phys. Sin. 62 044203 (in Chinese)
[17] Wang T I, Ochs G R and Lawrence R S 1981 Appl. Opt. 20 4073
[18] Liu H L, Zeng Z Y and Liu W Q 2006 Opt. Tech. 32 920 (in Chinese)
[19] Zeng Z Y, Liu H L, Jiang Y, Liu W Q and Liu J G 2007 Acta Photon. Sin. 36 1884 (in Chinese)
[20] Tatarski V I (translated by Wen J S, Song Z F, Zeng Z Y and Gu W Y) 1978 Wave Propagation in a Turbulent Medium (Beijing: Science Press) pp. 21, 23 (in Chinese)
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Investigation of spatial structure and sympathetic cooling in the 9Be+40Ca+ bi-component Coulomb crystals
Min Li(李敏), Yong Zhang(张勇), Qian-Yu Zhang(张乾煜), Wen-Li Bai(白文丽), Sheng-Guo He(何胜国), Wen-Cui Peng(彭文翠), and Xin Tong(童昕). Chin. Phys. B, 2023, 32(3): 036402.
[3] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[4] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[5] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[6] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[7] Synchronous detection of multiple optical characteristics of atmospheric aerosol by coupled photoacoustic cavity
Hua-Wei Jin(靳华伟), Ren-Zhi Hu(胡仁志), Pin-Hua Xie(谢品华), and Ping Luo(罗平). Chin. Phys. B, 2022, 31(6): 060703.
[8] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[9] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[10] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[11] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[12] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[13] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[14] Cross correlation mediated by distant Majorana zero modes with no overlap
Lupei Qin(秦陆培), Wei Feng(冯伟), and Xin-Qi Li(李新奇). Chin. Phys. B, 2022, 31(1): 017402.
[15] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
No Suggested Reading articles found!