Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 038803    DOI: 10.1088/1674-1056/23/3/038803
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Effective absorption enhancement in small molecule organic solar cells using trapezoid gratings

Xiang Chun-Ping (相春平)a, Jin Yu (金玉)b, Liu Jie-Tao (刘杰涛)a, Xu Bin-Zong (许斌宗)a, Wang Wei-Min (汪卫敏)a, Wei Xin (韦欣)a, Song Guo-Feng (宋国峰)a, Xu Yun (徐云)a
a Nano-optoelectronics Laboratory, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
b College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
Abstract  We demonstrate that the optical absorption is enhanced in small molecule organic solar cells by using a trapezoid grating structure. The enhanced absorption is mainly attributed to both waveguide modes and surface plasmon modes, which is simulated by using finite-difference time-domain method. The simulated results show that the surface plasmon along the semitransparent metallic Ag anode is excited by introducing the periodical trapezoid gratings, which induce the increase of high intensity field in the donor layer. Meanwhile, the waveguide modes result in a high intensity field in acceptor layer. The increase of field improves the absorption of organic solar cells significantly, which is demonstrated by simulating the electrical properties. The simulated results also show that the short-circuit current is increased by 31% in an optimized device, which is supported by the experimental measurement. Experimental result shows that the power conversion efficiency of the grating sample is increased by 7.7%.
Keywords:  organic solar cells      localized surface plasmon      waveguide  
Received:  13 May 2013      Revised:  19 July 2013      Accepted manuscript online: 
PACS:  88.40.jr (Organic photovoltaics)  
  88.40.hj (Efficiency and performance of solar cells)  
  42.15.Eq (Optical system design)  
  42.79.Dj (Gratings)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61036010 and 61177070), the National Basic Research Program of China (Grant Nos. 2011CBA00608 and 2012CB619203), and the National Key Research Program of China (Grant No. 2011ZX01015-001).
Corresponding Authors:  Xu Yun     E-mail:  xuyun@semi.ac.cn

Cite this article: 

Xiang Chun-Ping (相春平), Jin Yu (金玉), Liu Jie-Tao (刘杰涛), Xu Bin-Zong (许斌宗), Wang Wei-Min (汪卫敏), Wei Xin (韦欣), Song Guo-Feng (宋国峰), Xu Yun (徐云) Effective absorption enhancement in small molecule organic solar cells using trapezoid gratings 2014 Chin. Phys. B 23 038803

[1] Hoppe H and Sariciftci N S 2004 J. Mater. Res. 19 1924
[2] Chopra K L, Paulson P D and Dutta V 2004 Prog. Photovolt. 12 69
[3] He Z, Zhong C, Su S, Xu M, Wu H and Cao Y 2012 Nat. Photonics 6 591
[4] Die Heliatek GmbH http://www.heliatek.com
[2013]
[5] Atwater H A and Polman A 2010 Nat. Mater. 9 205
[6] Williamson A, McClean E, Leipold D, Zerulla D and Runge E 2011 Appl. Phys. Lett. 99 093307
[7] Shen H and Maes B 2011 Opt. Express 19 A1202
[8] Jin Y, Feng J, Zhang X L, Xu M, Bi Y G, Chen Q D, Wang H Y and Sun H B 2012 Appl. Phys. Lett. 101 163303
[9] Liu X D, Xu Z, Zhang F J, Zhao S L, Zhang T H, Gong W, Song J L, Kong C, Yan G A and Xu X R 2010 Chin. Phys. B 19 118601
[10] Peumans P, Uchida S and Forrest S R 2003 Nature 425 158
[11] Pala R A, White J, Barnard E, Liu J and Brongersma M L 2009 Adv. Mater. 21 3504
[12] Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M and Heeger A J 2007 Science 317 222
[13] Bai W L, Gan Q Q, Song G F, Chen L H, Kafafi Z and Bartoli F 2010 Opt. Express 18 A620
[14] Gao H L, Zhang X W, Yin Z G, Tan H R, Zhang S G, Meng J H and Liu X 2012 Appl. Phys. Lett. 101 133903
[15] Tvingstedt K, Persson N K, Inganas O, Rahachou A and Zozoulenko I V 2007 Appl. Phys. Lett. 91 113514
[16] Wang W, Wu S M, Reinhardt K, Lu Y L and Chen S C 2010 Nano Lett. 10 2012
[17] Deceglie M G, Ferry V E, Alivisatos A P and Atwater H A 2012 Nano Lett. 12 2894
[18] Tan H R, Santbergen R, Smets A H M and Zeman M 2012 Nano Lett. 12 4070
[19] Li X H, Choy W C H, Huo L J, Xie F X, Sha W E I, Ding B F, Guo X, Li Y F, Hou J H, You J B and Yang Y 2012 Adv. Mater. 24 3046
[20] Heng G G, Jiang J L, Xian F L, Qiang H X, Wu H and Li X Y 2011 Chin. Phys. B 20 094201
[21] Yang M, Fu Z P, Lin F and Zhu X 2011 Opt. Express 19 A763
[22] Dong L M and Xu H X 2012 Physics 41 582 (in Chinese)
[23] Maier S A 2007 Plasmonics: Fundamental and Applications Vol. 1 (New York: Springer Science+Business Media LLC) p. 10
[24] Kelly M K, Etchegoin P, Fuchs D, Kratschmer W and Fostiropoulos K 1992 Phys. Rev. B 46 4963
[25] Palik E D 1985 Handbook of Optical Constants of Solids Vol. 1 (Orlando, Florida: Harcourt Brace Jovanovich) p. 350
[26] Feng S F, Zhang X P, Song J Y, Liu H M and Song Y R 2009 Opt. Express 17 426
[27] Yang X L and Deng J X 2012 Physics 41 669 (in Chinese)
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[3] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[4] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[5] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[6] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[7] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[8] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[9] A multi-frequency circularly polarized metasurface antenna array based on quarter-mode substrate integrated waveguide for sub-6 applications
Hao Bai(白昊), Guang-Ming Wang(王光明), Xiao-Jun Zou(邹晓鋆), Peng Xie(谢鹏), and Yi-Ping Shi(石一平). Chin. Phys. B, 2022, 31(5): 054102.
[10] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[11] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[12] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
[13] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[14] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[15] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
No Suggested Reading articles found!