Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 037103    DOI: 10.1088/1674-1056/23/3/037103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structures and thermoelectric properties of solid solutions CuGa1-xInxTe2:A first-principles study

Xue Li (薛丽)a, Xu Bin (徐斌)b, Yi Lin (易林)a
a Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, China;
b Department of Mathematics and Information Sciences, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011, China
Abstract  The electronic structures of solid solutions CuGa1-xInxTe2 are systematically investigated using the full-potential all-electron linearized augmented plane wave method. The calculated lattice parameters almost linearly increase with the increase of the In composition, which are in good agreement with the available experimental results. The calculated band structures with the modified Becke–Johnson potential show that all solid solutions are direct gap conductors. The band gap decreases linearly with In composition increasing. Based on the electronic structure calculated, we investigate the thermoelectric properties by the semi-classical Boltzmann transport theory. The results suggest that when Ga is replaced by In, the bipolar effect of Seebeck coefficient S becomes very obvious. The Seebeck coefficient even changes its sign from positive to negative for p-type doping at low carrier concentrations. The optimal p-type doping concentrations have been estimated based on the predicted maximum values of the power factor divided by the scattering time.
Keywords:  CuGa1-xInxTe2      electronic structures      thermoelectric properties      first-principles  
Received:  18 July 2013      Revised:  10 September 2013      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Nc (Total energy and cohesive energy calculations)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
Fund: Project supported by the China Postdoctoral Science Foundation (Grant No. 2012M511603).
Corresponding Authors:  Yi Lin     E-mail:  d201177035@hust.edu.cn

Cite this article: 

Xue Li (薛丽), Xu Bin (徐斌), Yi Lin (易林) Electronic structures and thermoelectric properties of solid solutions CuGa1-xInxTe2:A first-principles study 2014 Chin. Phys. B 23 037103

[1] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[2] Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A and Yang P 2008 Nature 451 10
[3] Plirdpring T, Kurosaki K, Kosuga A, Day T, Firdosy S, Ravi V, Snyder G J, Harnwunggmoung A, Sugahara T, O-hishi Y, Muta H and Yamanaka S 2012 Adv. Mater. 24 3622
[4] Liu R H, Xi L L, Liu H L, Shi X, Zhang W Q and Chen L D 2012 Chem. Commun. 48 3818
[5] Li Y P, Meng Q S, Deng Y, Zhou H, Gao Y L, Li Y Y, Yang J F and Cui J L 2012 Appl. Phys. Lett. 100 231903
[6] Liu Y, Li H J, Zhang Q, Li Y and Liu H T 2013 Chin. Phys. B 22 057201
[7] Yang M J, Shen Q and Zhang L M 2011 Chin. Phys. B 20 106202
[8] Cui J, Li Y, Du Z, Meng Q and Zhou H 2013 J. Mater. Chem. A 1 677
[9] Zhang H, Luo J, Zhu H T, Liu Q L, Liang J K, Li J B and Liu G Y 2012 Chin. Phys. B 21 106101
[10] Parker D and Singh D 2012 Phys. Rev. B 85 125209
[11] Wu W, Wu K, Ma Z and Sa R 2012 Chem. Phys. Lett. 537 62
[12] Zou D F, Xie S H, Liu Y Y, Lin J G and Li J Y 2013 J. Alloys Comp. 570 150
[13] Kuhn B, Kaefer W, Fess K, Friemelt K, Turner Ch, Wendl M and Bucher E 1997 phys. Stat. Sol. (a) 162 661
[14] Blaha P, Schwarz K, Madsen G, Kvasnicka D and Luitz J 2001WIEN2K, An Augmented Plane Wave+Local Orbitals Pro-gram for Calculating Crystal Properties (K Schwarz, Tech. Univ. Wien, Austria)
[15] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[16] Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67
[17] Becke A D and Johnson E R 2006 J. Chem. Phys. 124 221101
[18] Pan Z J, Zhang L T and Wu J S 2005 Acta Phys. Sin. 54 5308 (in Chinese)
[19] Feng J, Xiao B and Chen J C 2007 Acta Phys. Sin. 56 5990 (in Chinese)
[20] Peng H, Wang C L, Li J C, Zhang R Z, Wang H C and Sun Y 2011 Chin. Phys. B 20 046103
[21] León M, Merino J M and Martin De Vidales J L 1992 J. Mater. Sci. 27 4495
[22] Bodnar I V and Orlova N S 1986 Cryst. Res. Technol. 21 1091
[23] Abrahams S C and Bernstein J L 1973 J. Chem. Phys. 59 5415
[24] Grzeta-Plenkovic B and Santic J 1983 J. Appl. Cryst. 16 576
[25] León M, Merino J M and MartiN De Vidales J L 1993 J. Vac. Technol. A 11 2430
[26] Avon J E, Yoodee K and Woolley J C 1984 J. Appl. Phys. 55 524
[27] Knight K S 1992 Mater. Res. Bull. 27 161
[28] Gaburici D, Lazarescu M F, Manea A and Sandu V 2000 Cryst. Res. Technol. 35 265
[29] Jaffe J E and Zunger A 1984 Phys. Rev. B 29 1882
[30] Rashkeev S N and Lambrecht W R L 2001 Phys. Rev. B 63 16521
[31] Zhang X Z, Shen K S, Jiao Z Y and Huang X F 2013 Comput. Theor. Chem. 1010 67
[32] Hossain M Z and Johnson H T 2012 Appl. Phys. Lett. 100 253901
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[10] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[11] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[12] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[13] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[14] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[15] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
No Suggested Reading articles found!