Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(4): 1352-1356    DOI: 10.1088/1674-1056/18/4/011
GENERAL Prev   Next  

Quantum logic gates with two-level trapped ions beyond Lamb--Dicke limit

Zheng Xiao-Juan(郑小娟)a)b), Luo Yi-Min(罗益民)b), and Cai Jian-Wu(蔡建武)c)
a School of Material Science and Engineering, Central South University, Changsha 410083, China; b School of Physics Science and Technology, Central South University, Changsha 410083, China; c Department of Physics, Hunan Industrial University, Zhuzhou 412000, China
Abstract  In the system with two two-level ions confined in a linear trap, this paper presents a simple scheme to realize the quantum phase gate (QPG) and the swap gate beyond the Lamb--Dicke (LD) limit. These two-qubit quantum logic gates only involve the internal states of two trapped ions. The scheme does not use the vibrational mode as the data bus and only requires a single resonant interaction of the ions with the lasers. Neither the LD approximation nor the auxiliary atomic level is needed in the proposed scheme. Thus the scheme is simple and the interaction time is very short, which is important in view of decoherence. The experimental feasibility for achieving this scheme is also discussed.
Keywords:  trapped ions      quantum phase gate      swap gate      beyond the Lamb--Dicke limit  
Received:  05 July 2008      Revised:  29 August 2008      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  84.30.Sk (Pulse and digital circuits)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the Important Program of Hunan Provincial Education Department (Grant No 06A038), Department of Education of Hunan Province (Grant No 06C080), Natural Science Foundation of Hunan Province, China (Grant No 07JJ3013), and Postdoctoral F

Cite this article: 

Zheng Xiao-Juan(郑小娟), Luo Yi-Min(罗益民), and Cai Jian-Wu(蔡建武) Quantum logic gates with two-level trapped ions beyond Lamb--Dicke limit 2009 Chin. Phys. B 18 1352

[1] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[2] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[3] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[4] Scheme to measure the expectation value of a physical quantity in weak coupling regime
Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2021, 30(3): 033201.
[5] Implementation of quantum phase gate between two atoms via Rydberg antiblockade and adiabatic passage
Xi Tan(谭曦), Jin-Lei Wu(吴金雷), Can Deng(邓灿), Wei-Jian Mao(毛伟建), Hai-Tao Wang(王海涛), Xin Ji(计新). Chin. Phys. B, 2018, 27(10): 100307.
[6] Multi-ion Mach–Zehnder interferometer with artificial nonlinear interactions
Hu Yan-Min (胡艳敏), Yang Wan-Li (杨万里), Xiao Xing (肖兴), Feng Mang (冯芒), Li Chao-Hong (李朝红). Chin. Phys. B, 2014, 23(3): 034205.
[7] Linear ion trap imperfection and the compensation of excess micromotion
Xie Yi(谢艺), Wan Wei(万威), Zhou Fei(周飞), Chen Liang(陈亮), Li Chao-Hong(李朝红), and Feng Mang(冯芒) . Chin. Phys. B, 2012, 21(6): 063201.
[8] Irreversibility of a quantum walk induced by controllable decoherence employing random unitary operations
Xu You-Yang(徐酉阳), Zhou Fei(周飞), Chen Liang(陈亮) Xie Yi(谢艺), Xue Peng(薛鹏), and Feng Mang(冯芒) . Chin. Phys. B, 2012, 21(4): 040304.
[9] Quantum state swap for two trapped Rydberg atoms
Wu Huai-Zhi(吴怀志), Yang Zhen-Biao(杨贞标), and Zheng Shi-Biao(郑仕标) . Chin. Phys. B, 2012, 21(4): 040305.
[10] Deterministic implementations of fermionic quantum SWAP and Fredkin gates for spin qubits based on charge detection
Wang Hong-Fu(王洪福), Zhang Shou(张寿), and Zhu Ai-Dong(朱爱东) . Chin. Phys. B, 2012, 21(4): 040306.
[11] Feasible schemes for quantum swap gates of optical qubits via cavity QED
Tang Shi-Qing(唐世清), Zhang Deng-Yu(张登玉), Wang Xin-Wen(汪新文), Xie Li-Jun(谢利军), and Gao Feng(高峰) . Chin. Phys. B, 2011, 20(4): 040308.
[12] One-step implementation of an N-qubit quantum phase gate through a double Raman passage
LÜ Hai-Yan(吕海燕), Yu Ya-Fei(於亚飞), and Zhang Zhi-Ming(张智明). Chin. Phys. B, 2010, 19(3): 034205.
[13] Preparation of the four-qubit cluster states in cavity QED and the trapped-ion system
Zheng Xiao-Juan (郑小娟), Xu Hui(徐慧), Fang Mao-Fa(方卯发), and Zhu Kai-Cheng(朱开成). Chin. Phys. B, 2010, 19(3): 034207.
[14] Two-qutrit maximally entangled states prepared via adiabatic passage in ion-trapped system
Huang Bin(黄彬), Lin Xia(林霞), Lin Hui(林慧), Cai Zhen-Hua(蔡振华), and Yang Rong-Can(杨榕灿). Chin. Phys. B, 2010, 19(12): 124206.
[15] Two quantum oscillators coupled with a planar radio frequency ion trap
Chen Liang(陈亮) and Gao Ke-Lin(高克林). Chin. Phys. B, 2010, 19(11): 110309.
No Suggested Reading articles found!