Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 113206    DOI: 10.1088/1674-1056/19/11/113206
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Measurement of the secular motion frequency and the space charge density in the linear ion trap

Zhou Fei(周飞)a)b), Xie Yi(谢艺) a)b), Xu You-Yang(徐酉阳)a)b), Huang Xue-Ren(黄学人)a), and Feng Mang(冯芒)a)†
a State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; b Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
Abstract  This paper reports that a cloud of laser-cooled 40Ca+ is successfully trapped and manipulated in the home-built linear ion trap constructed for quantum information processing (QIP). The frequency of the secular motion and the space charge density of the ion cloud are measured, which help knowing the characteristic of the trapping potential and are the prerequisite of QIP with the trapped ions.
Keywords:  trapped ions      secular motion frequency      space charge  
Received:  29 March 2010      Revised:  28 April 2010      Accepted manuscript online: 
PACS:  37.10.De (Atom cooling methods)  
  37.10.Vz (Mechanical effects of light on atoms, molecules, and ions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10774161, 10774163 and 10974225), and by National Fundamental Research Program of China (Grant No. 2006CB921203).

Cite this article: 

Zhou Fei(周飞), Xie Yi(谢艺), Xu You-Yang(徐酉阳), Huang Xue-Ren(黄学人), and Feng Mang(冯芒) Measurement of the secular motion frequency and the space charge density in the linear ion trap 2010 Chin. Phys. B 19 113206

[1] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature 464 45
[2] Blatt R and Wineland D J 2008 Nature 453 1008
[3] Monroe C, Meekhof D M, King B E, Itano W M and Winland D J 1995 Phys. Rev. Lett. 75 4714
[4] Gulde S, Riebe M, Lancaster G P T, Becher C, Eschner J, Háffner H, Schmidt-Kaler F, Chuang I L and Blatt R 2003 Nature 421 48
[5] Riebe M, Háffner H, Roos C F, Hánsel W, Benhelm J, Lancaster G P T, Körber T W, Becher C, Schmidt-Kaler F, James D V F and Blatt R 2004 Nature 429 734
[6] Roos C F, Chwalla M, Kim K, Riebe M and Blatt R 2006 Nature 443 316
[7] Moehring D L, Maunz P, Olmschenk S, Younge K C, Matsukevich D N, Duan L M and Monroe C 2007 Nature 449 68
[8] Háffner H, Hánsel W, Roos C F, Benhelm J, Chek-al-kar D, Chwalla M, Körber T, Rapol U D, Riebe M, Schmidt P O, Becher C, Gühne O, Dür W and Blatt R 2005 Nature 438 643
[9] Gerritsma R, Kirchmair G, Záhringer F, Solano E, Blatt R and Roos C F 2010 Nature bf463 68
[10] Home J P, Hanneke D, Jost J D, Amini J M, Leibfried D and Wineland D J 2009 Science 325 1227
[11] Coudreau T, Grosshans F, Guibal S and Guidoni L 2007 J. Phys. B 40 413
[12] Herskind P, Dantan A, Langkilde-Lauesen M B, Mortensen A, So rensen J L and Drewsen M 2008 Appl. Phys. B 93 373
[13] Biercuk M J, Uys H, VanDevender A P, Shiga N, Itano W M and Bollinger J J 2009 Nature 458 996
[14] Paul W 1990 Rev. Mod. Phys. 62 531
[15] Ghosh P K 1995 Ion Trap (New York: Oxford University Press) p23
[16] Wineland D J and Dehmelt H 1975 Int. J. Mass Spectrum. Ion Phys. 16 338
[17] Guo B, Guan H, Liu Q, Huang Y, Huang X R and Gao K L 2010 Chin. Phys. Lett. bf 27 013202
[18] Blinov B B, Moehring D L, Duan L M and Monroe C 2004 Nature 428 153
[19] Olmschenk S, Younge K C, Moehring D L, Matsukevich D N, Maunz P and Monroe C 2007 Phys. Rev. A 76 052314
[20] Wunderlich C, Balzer C, Hannemann T, Mintert F, Neuhauser W, Reiss D and Toschek P E 2003 J. Phys. B 36 1063
[21] Kurz N, Dietrich M R, Shu G, Bowler R, Salacka J, Mirgon V and Blinov B B 2008 Phys. Rev. A 77 060501
[22] Wang S X, Labaziewicz J, Ge Y, Shewmon R and Chuang I L 2009 Appl. Phys. Lett. 94 094103
[23] Leibfried D, DeMarco B, Meyer V, Rowe M, Ben-Kish A, Barrett M, Britton J, Hughes J, Itano W M, Jelenkovic B M, Langer C, Lucas D, Rosenband T and Wineland D J 2003 J. Phys. B 36 599
[24] Feng M, Hai W H, Zhu X W, Gao K L and Shi L 2000 Chin. Phys. 9 250
[25] Zheng X J, Fang M F, Cai J W and Liao X P 2006 Chin. Phys. 15 492
[26] Zheng X J, Luo Y M and Cai J W 2009 Chin. Phys. 18 1352 endfootnotesize
[1] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[2] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[3] Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique
Juan Qin(秦娟), Gang Cao(曹港), Run Xu(徐闰), Jing Lin(林婧), Hua Meng(孟华), Wen-Zhen Wang(王文贞), Zi-Ye Hong(洪子叶), Jian-Cong Cai(蔡健聪), and Dong-Mei Li(李冬梅). Chin. Phys. B, 2022, 31(11): 117102.
[4] Numerical simulation of anode heat transfer of nitrogen arc utilizing two-temperature chemical non-equilibrium model
Chong Niu(牛冲), Surong Sun(孙素蓉), Jianghong Sun(孙江宏), and Haixing Wang(王海兴). Chin. Phys. B, 2021, 30(9): 095206.
[5] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[6] Scheme to measure the expectation value of a physical quantity in weak coupling regime
Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2021, 30(3): 033201.
[7] Influence of sub-bandgap illumination on space charge distribution in CdZnTe detector
Rongrong Guo(郭榕榕, Jinhai Lin(林金海), Lili Liu(刘莉莉), Shiwei Li(李世韦), Chen Wang(王尘), Feibin Xiong(熊飞兵), and Haijun Lin(林海军). Chin. Phys. B, 2021, 30(3): 036101.
[8] Realizing photomultiplication-type organic photodetectors based on C60-doped bulk heterojunction structure at low bias
Wei Gong(龚伟), Tao An(安涛), Xinying Liu(刘欣颖), Gang Lu(卢刚). Chin. Phys. B, 2019, 28(3): 038501.
[9] Chemical structure of grain-boundary layer in SrTiO3 and its segregation-induced transition: A continuum interface approach
Hui Gu(顾辉). Chin. Phys. B, 2018, 27(6): 060503.
[10] Quantitative evaluation of space charge effects of laser-cooled three-dimensional ion system on a secular motion period scale
Li-Jun Du(杜丽军), Hong-Fang Song(宋红芳), Shao-Long Chen(陈邵龙), Yao Huang(黄垚), Xin Tong(童昕), Hua Guan(管桦), Ke-Lin Gao(高克林). Chin. Phys. B, 2018, 27(4): 043701.
[11] Plural interactions of space charge wave harmonics during the development of two-stream instability
Victor Kulish, Alexander Lysenko, Michael Rombovsky, Vitaliy Koval, Iurii Volk. Chin. Phys. B, 2015, 24(9): 095201.
[12] Multi-ion Mach–Zehnder interferometer with artificial nonlinear interactions
Hu Yan-Min (胡艳敏), Yang Wan-Li (杨万里), Xiao Xing (肖兴), Feng Mang (冯芒), Li Chao-Hong (李朝红). Chin. Phys. B, 2014, 23(3): 034205.
[13] Research on field emission mechanism of nano-structured carbon film
Wang Yan-Yan (王艳燕), Li Ying-Ai (李英爱), Xu Ji-Song (许基松), Gu Guang-Rui (顾广瑞 ). Chin. Phys. B, 2012, 21(8): 087902.
[14] Linear ion trap imperfection and the compensation of excess micromotion
Xie Yi(谢艺), Wan Wei(万威), Zhou Fei(周飞), Chen Liang(陈亮), Li Chao-Hong(李朝红), and Feng Mang(冯芒) . Chin. Phys. B, 2012, 21(6): 063201.
[15] Irreversibility of a quantum walk induced by controllable decoherence employing random unitary operations
Xu You-Yang(徐酉阳), Zhou Fei(周飞), Chen Liang(陈亮) Xie Yi(谢艺), Xue Peng(薛鹏), and Feng Mang(冯芒) . Chin. Phys. B, 2012, 21(4): 040304.
No Suggested Reading articles found!