Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 034204    DOI: 10.1088/1674-1056/23/3/034204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dynamics of quantum discord in a two-qubit system under classical noise

Guo You-Neng (郭有能), Fang Mao-Fa (方卯发), Liu Xiang (刘翔), Yang Bai-Yuan (杨百元)
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, China
Abstract  We study the quantum discord dynamics of two noninteracting qubits that are, respectively, subject to classical noise. The results show that the dynamics of quantum discord are dependent on both the coupling between the qubits and classical noise, and the average switching rate of the classical noise. In the weak-coupling Markovian region, quantum discord exhibits exponent decay without revival, and can be well protected by increasing the average classical noise switching rate. While in the strong-coupling non-Markovian region, quantum discord reveals slowly decayed oscillations with quick revival by decreasing the average switching rate of the classical noise. Thus, our results provide a new method of protecting quantum discord in a two-qubit system by controlling the coupling between the qubits and classical noise, and the average switching rate of the classical noise.
Keywords:  quantum discord      non-Markovian region      classical noise  
Received:  28 July 2013      Revised:  21 August 2013      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
Fund: Projects supported by the National Natural Science Foundation of China (Grant No. 11074072).
Corresponding Authors:  Fang Mao-Fa     E-mail:  mffang@hunnu.edu.cn

Cite this article: 

Guo You-Neng (郭有能), Fang Mao-Fa (方卯发), Liu Xiang (刘翔), Yang Bai-Yuan (杨百元) Dynamics of quantum discord in a two-qubit system under classical noise 2014 Chin. Phys. B 23 034204

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Schumacher B and Westmoreland M D 2006 Phys. Rev. A 74 042305
[3] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[4] Xu J W and Chen Q H 2012 Chin. Phys. B 21 040302
[5] Ding B F, Wang X Y, Liu J F, Yan L and Zhao H P 2011 Chin. Phys. Lett. 28 104216
[6] Tian L J, Zhang C Y and Qin L G 2013 Chin. Phys. Lett. 30 050303
[7] Wang X Y, Ding B F and Zhao H P 2013 Chin. Phys. B 22 020309
[20] Maziero J, Werlang T, Fanchini F F, Celeri L C and Serra R M 2010 Phys. Rev. A 81 022116
[21] He Q L, Xu J B, Yao D X and Zhang Y Q 2011 Phys. Rev. A 84 022312
[22] Franco R L, Bellomo B, Andersson E and Compagno G 2012 Phys. Rev. A 85 032318
[23] Marzzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
[8] Madhok V and Datta A 2011 Phys. Rev. A 83 032323
[9] Datta A 2009 Phys. Rev. A 80 052304
[10] Girolami D and Adesso G 2011 Phys. Rev. A 83 052108
[11] Luo S L 2008 Phys. Rve. A 77 042303
[12] Ji Y H, Hu J J and Hu Y 2012 Chin. Phys. B 21 110304
[13] Li N and Luo S L 2007 Phys. Rev. A 76 032317
[14] Dillenschneider R 2008 Phys. Rev. B 78 224413
[15] Sarandy M S 2009 Phys. Rev. A 80 022108
[16] Mazhar A, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[17] Fanchini F F, Werlang T, Brasil C A, Arruda L G E and Caldeira A O 2010 Phys. Rev. A 81 052107
[18] Werlang T, Souza S, Fanchini F F and Villas B C J 2009 Phys. Rev. A 80 024103
[19] Galve F, Giorgi G L and Zambrini R 2011 Phys. Rev. A 83 012102
[24] Wang C Z, Li C X, Liu Y N and Li J F 2011 J. Phys. B: At. Mol. Opt. Phys. 44 015503
[25] Wang C and Chen Q H 2013 Chin. Phys. B 22 040304
[26] Zhou D, Lang A and Joynt R 2010 Quantum Inf. Process. 9 727
[27] Joynt R, Zhou D and Wang Q H 2011 Int. J. Mod. Phys. B 25 2115
[1] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
[2] Controlling the entropic uncertainty and quantum discord in two two-level systems by an ancilla in dissipative environments
Rong-Yu Wu(伍容玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(3): 037302.
[3] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[4] Quantum discord of two-qutrit system under quantum-jump-based feedback control
Chang Wang(王畅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2019, 28(12): 120302.
[5] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[6] Thermal quantum correlations of a spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya interaction
Yidan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2018, 27(9): 090306.
[7] Comparative investigation of freezing phenomena for quantum coherence and correlations
Lian-Wu Yang(杨连武), Wei Han(韩伟), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(4): 040302.
[8] Some studies of the interaction between two two-level atoms and SU(1, 1) quantum systems
T M El-Shahat, M Kh Ismail. Chin. Phys. B, 2018, 27(10): 100201.
[9] Geometric global quantum discord of two-qubit states
Yunlong Xiao(肖运龙), Tao Li(李陶), Shao-Ming Fei(费少明), Naihuan Jing(景乃桓), Zhi-Xi Wang(王志玺), Xianqing Li-Jost(李先清). Chin. Phys. B, 2016, 25(3): 030301.
[10] Phase effect on dynamics of quantum discord modulated by interaction between qubits
Wang Guo-You (王国友), Guo You-Neng (郭有能), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2015, 24(9): 090303.
[11] Quantum correlation dynamics in a two-qubit Heisenberg XYZ model with decoherence
Yang Guo-Hui (杨国晖), Zhang Bing-Bing (张冰冰), Li Lei (李磊). Chin. Phys. B, 2015, 24(6): 060302.
[12] Dynamics of super-quantum discord and direct control with weak measurement in open quantum system
Ji Ying-Hua (嵇英华). Chin. Phys. B, 2015, 24(12): 120302.
[13] Characterizing the dynamics of quantum discord under phase damping with POVM measurements
Jiang Feng-Jian (蒋峰建), Ye Jian-Feng (叶剑锋), Yan Xin-Hu (闫新虎), Lü Hai-Jiang (吕海江). Chin. Phys. B, 2015, 24(10): 100304.
[14] Symmetric quantum discord for a two-qubit state
Wang Zhong-Xiao (王仲宵), Wang Bo-Bo (王波波). Chin. Phys. B, 2014, 23(7): 070305.
[15] Correlation dynamics of a qubit–qutrit system in a spin-chain environment with Dzyaloshinsky–Moriya interaction
Yang Yang (杨阳), Wang An-Min (王安民). Chin. Phys. B, 2014, 23(2): 020307.
No Suggested Reading articles found!