Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 024104    DOI: 10.1088/1674-1056/23/2/024104
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Amplifying device created with isotropic dielectric layer

Wang Shen-Yun (王身云)a, Liu Shao-Bin (刘少斌)b c
a School of Electronic & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China;
b College of Information Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China;
c State Key Laboratory of Millimeter Waves of Southeast University, Nanjing 210096, China
Abstract  Using the concept of optical transformation, we report on an amplifying device, which can make an arbitrary object enlarged. Its potential application to small object identification and detection is foreseeable. The cylindrical anisotropic amplifying shell could be mimicked by radially symmetrical “sectors” alternating in composition between two profiles of isotropic dielectrics; the permittivity and permeability in each “sector” can be properly determined by the effective medium theory. Both the magnetic and nonmagnetic amplifying devices are validated by full-wave finite element simulations. Good amplifying performance is observed.
Keywords:  transformation media      amplifier      effective medium  
Received:  27 January 2013      Revised:  25 May 2013      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: Project supported by the Open Research Program in State Key Laboratory of Millimeter Waves, China (Grant No. K200802), the National Natural Science Foundation of China (Grant No. 61302048), and the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions, China.
Corresponding Authors:  Wang Shen-Yun     E-mail:  wangsy2006@126.com
About author:  41.20.Jb

Cite this article: 

Wang Shen-Yun (王身云), Liu Shao-Bin (刘少斌) Amplifying device created with isotropic dielectric layer 2014 Chin. Phys. B 23 024104

[1] Pendry J B 2006 Science 312 1780
[2] Leonhardt U 2006 Science 312 1777
[3] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and Schultz S 2000 Phys. Rev. Lett. 84 4184
[4] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[5] Jiang W X, Cui T J, Cheng Q, Chin J Y, Yang X M, Liu R and Smith D R 2008 Appl. Phys. Lett. 92 264101
[6] Chen H and Chan C T 2007 Appl. Phys. Lett. 90 241105
[7] Yu Z Z, Feng Y J, Wang Z B, Zhao J M and Jian T 2013 Chin. Phys. B 22 034102
[8] Wang Z, Luo X Y, Liu J J and Dong J F 2013 Acta Phys. Sin. 62 024101 (in Chinese)
[9] Zhang K, Wu Q, Meng F Y and Li L W 2010 Opt. Express 18 17273
[10] Schurig D, Pendry J B and Smith D R 2006 Opt. Express 14 9794
[11] Wu Q, Zhang K, Meng F Y and Li L W 2010 Acta Phys. Sin. 59 6071 (in Chinese)
[12] Wu Q, Zhang K, Meng F Y and Li L W 2009 Acta Phys. Sin. 58 1619 (in Chinese)
[13] Farhat M, Guenneau S and Enoch S 2009 Phys. Rev. Lett. 103 024301
[14] Qiu C W, Hu L, Xu X and Feng Y 2009 Phys. Rev. E 79 047602
[15] Qiu C W, Hu L and Zouhdi S 2010 Opt. Express 18 14950
[16] Li J and Pendry J B 2008 Phys. Rev. Lett. 101 203901
[17] Liu R, Ji C, Mock J J, Chin J Y, Cui T J and Smith D R 2009 Science 323 366
[18] Wang S Y and Liu S B 2012 Chin. Phys. B 21 044102
[19] Lai Y, Ng J, Chen H Y, Han D Z, Xiao J J, Zhang Z Q and Chan C T 2009 Phys. Rev. Lett. 102 253902
[20] Lai Y, Chen H Y, Zhang Z Q and Chan C T 2009 Phys. Rev. Lett. 102 093901
[21] Ng J, Chen H and Chan C T 2009 Opt. Lett. 34 644
[22] Zang X and Jiang C 2011 J. Opt. Soc. Am. B 28 1082
[23] Wang Y, Zhang D H, Wang J, Yang X, Li D and Xu Z 2011 Opt. Lett. 36 3855
[24] Yang T, Chen H, Luo X and Ma R 2008 Opt. Express 16 18545
[25] Zang X and Jiang C 2010 Opt. Express 18 6891
[26] Chen Z, Wang L, Wang C and Fang Z 2011 Chin. Phys. Lett. 9 021601
[27] Zang X, Cai B and Zhu Y 2013 Appl. Opt. 52 1832
[28] Jiang W X, Cui T J, Yang X M, Ma H F and Cheng Q 2011 Appl. Rev. Lett. 98 204101
[29] Guo Y N, Liu S B, Zhao X, Wang S Y and Chen C 2012 Chin. Phys. B 21 064101
[30] Cai W, Chettiar U K, Kildishev A V and Shalaev V M 2007 Nat. Photonics 1 224
[31] Wood B, Pendry J B and Tsai D P 2006 Phys. Rev. B 74 115116
[32] Jacob Z, Alekseyev L V and Narimanov E 2006 Opt. Express 14 8247
[33] Cai W, Chettiar U K, Kildishev A V and Shalaev V M 2008 Opt. Express 16 5444
[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆). Chin. Phys. B, 2022, 31(8): 087303.
[3] The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞). Chin. Phys. B, 2022, 31(3): 034207.
[4] Development of series SQUID array with on-chip filter for TES detector
Wentao Wu(伍文涛), Zhirong Lin(林志荣), Zhi Ni(倪志), Peizhan Li(李佩展), Tiantian Liang(梁恬恬), Guofeng Zhang(张国峰), Yongliang Wang(王永良), Liliang Ying(应利良), Wei Peng(彭炜), Wen Zhang(张文), Shengcai Shi(史生才), Lixing You(尤立星), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(2): 028504.
[5] Vacuum-gap-based lumped element Josephson parametric amplifier
Sishi Wu(吴思诗), Dengke Zhang(张登科), Rui Wang(王锐), Yulong Liu(刘玉龙), Shuai-Peng Wang(王帅鹏), Qichun Liu(刘其春), J S Tsai(蔡兆申), and Tiefu Li(李铁夫). Chin. Phys. B, 2022, 31(1): 010306.
[6] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[7] All-fiber laser seeded femtosecond Yb:KGW solid state regenerative amplifier
Renchong Lv(吕仁冲), Hao Teng(滕浩), Jiajun Song(宋贾俊), Renzhu Kang(康仁铸), Jiangfeng Zhu(朱江峰), and Zhiyi Wei(魏志义). Chin. Phys. B, 2021, 30(9): 094206.
[8] Modeling of cascaded high isolation bidirectional amplification in long-distance fiber-optic time and frequency synchronization system
Kuan-Lin Mu(穆宽林), Xing Chen(陈星), Zheng-Kang Wang(王正康), Yao-Jun Qiao(乔耀军), and Song Yu(喻松). Chin. Phys. B, 2021, 30(7): 074208.
[9] Perfect photon absorption based on the optical parametric process
Yang Zhang(张旸), Yu-Bo Ma(马宇波), Xin-Ping Li(李新平), Yu Guo(郭钰), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(6): 064203.
[10] Fabrication and characterization of all-Nb lumped-element Josephson parametric amplifiers
Hang Xue(薛航), Zhirong Lin(林志荣), Wenbing Jiang(江文兵), Zhengqi Niu(牛铮琦), Kuang Liu(刘匡), Wei Peng(彭炜), and Zhen Wang(王镇). Chin. Phys. B, 2021, 30(6): 068503.
[11] Fabrication of Josephson parameter amplifier and its applicationin squeezing vacuum fluctuations
Pengtao Song(宋鹏涛), Xueyi Guo(郭学仪), Kai Xu(许凯), Xiaohui Song(宋小会), Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Hekang Li(李贺康), Luhong Su(苏鹭红), Yirong Jin(金贻荣), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(12): 128502.
[12] A 61-mJ, 1-kHz cryogenic Yb: YAG laser amplifier
Huijun He(何会军), Jun Yu(余军), Wentao Zhu(朱文涛), Qingdian Lin(林庆典), Xiaoyang Guo(郭晓杨), Cangtao Zhou(周沧涛), and Shuangchen Ruan(阮双琛). Chin. Phys. B, 2021, 30(12): 124206.
[13] High gain fiber-solid hybrid double-passing end-pumped Nd: YVO4 picosecond amplifier with high beam quality
Xueyan Dong(董雪岩), Pingxue Li(李平雪), Shun Li(李舜), Dongsheng Wang(王东生). Chin. Phys. B, 2020, 29(5): 054207.
[14] Hybrid linear amplifier-involved detection for continuous variable quantum key distribution with thermal states
Yu-Qian He(贺宇千), Yun Mao(毛云), Hai Zhong(钟海), Duang Huang(黄端), Ying Guo(郭迎). Chin. Phys. B, 2020, 29(5): 050309.
[15] All-fiberized very-large-mode-area Yb-doped fiber based high-peak-power narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Min Yang(杨敏), Ping-Xue Li(李平雪), Dong-Sheng Wang(王东生), Ke-Xin Yu(于可新), Xue-Yan Dong(董雪岩), Ting-Ting Wang(王婷婷), Chuan-Fei Yao(姚传飞), and Wei-Xin Yang(杨卫鑫). Chin. Phys. B, 2020, 29(11): 114206.
No Suggested Reading articles found!