|
|
Hybrid linear amplifier-involved detection for continuous variable quantum key distribution with thermal states |
Yu-Qian He(贺宇千)1, Yun Mao(毛云)1, Hai Zhong(钟海)1, Duang Huang(黄端)2, Ying Guo(郭迎)1 |
1 School of Automation, Central South University, Changsha 410083, China; 2 School of Computer Science and Engineering, Central South University, Changsha 410083, China |
|
|
Abstract Continuous-variable quantum key distribution (CVQKD) can be integrated with thermal states for short-distance wireless quantum communications. However, its performance is usually restricted with the practical thermal noise. We propose a method to improve the security threshold of thermal-state (TS) CVQKD by employing a heralded hybrid linear amplifier (HLA) at the receiver. We find the effect of thermal noise on the HLA-involved scheme in near-and-mid infrared band or terahertz band for direct and reverse reconciliation. Numerical simulations show that the HLA-involved scheme can compensate for the detriment of thermal noise and hence increase the security threshold of TS-CVQKD. In near-and-mid infrared band, security threshold can be extended by 2.1 dB in channel loss for direct reconciliation and 1.6 dB for reverse reconciliation, whereas in terahertz band, security threshold can be slightly enhanced for the gain parameter less than 1 due to the rise in thermal noise.
|
Received: 08 February 2020
Revised: 07 March 2020
Accepted manuscript online:
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61572529 and 61871407). |
Corresponding Authors:
Yun Mao
E-mail: maocsu@sina.com
|
Cite this article:
Yu-Qian He(贺宇千), Yun Mao(毛云), Hai Zhong(钟海), Duang Huang(黄端), Ying Guo(郭迎) Hybrid linear amplifier-involved detection for continuous variable quantum key distribution with thermal states 2020 Chin. Phys. B 29 050309
|
[1] |
Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
|
[2] |
Grosshans F, Van Assche G, Wenger J, Brouri R, Cerf N J and Grangier P 2003 Nature 421 238
|
[3] |
Zhang S J, Ma H X, Wang X, Zhou C, Bao W S and Zhang H L 2019 Chin. Phys. B 28 080304
|
[4] |
Gong L H, Song H C, He C S, Liu Y and Zhou N R 2014 Phys. Scr. 89 035101
|
[5] |
Gessner M, Pezze L and Smerzi A 2016 Phys. Rev. A 94 020101
|
[6] |
Takeda S, Fuwa M, van Loock P and Furusawa A 2015 Phys. Rev. Lett. 114 100501
|
[7] |
Yin J, Cao Y, Li Y H et al. 2017 Science 356 1140
|
[8] |
Du G H, Li H W, Wang Y and Bao W S 2019 Chin. Phys. B 28 90301
|
[9] |
He R S, Jiang M S, Wang Y, Gan Y H, Zhou C and Bao W S 2019 Chin. Phys. B 28 040303
|
[10] |
Zhang Y, Li Z, Chen Z et al. 2019 Quantum Sci. Technol. 4 035006
|
[11] |
Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
|
[12] |
Qi B, Huang L L, Qian L and Lo H K 2007 Phys. Rev. A 76 052323
|
[13] |
Fossier S, Diamanti E, Debuisschert T, Villing A, Tualle-Brouri R and Grangier P 2009 New J. Phys. 11 045023
|
[14] |
Liao Q, Wang Y, Huang D and Guo Y 2018 Opt. Express 26 19907
|
[15] |
Newton E, Ghesquiére A, Wilson F L, Varcoe B T and Moseley M 2019 J. Phys. B-At. Mol. Opt. Phys. 52 125501
|
[16] |
Weedbrook C, Pirandola S and Ralph T C 2012 Phys. Rev. A 86 022318
|
[17] |
Weedbrook C, Ottaviani C and Pirandola S 2014 Phys. Rev. A 89 012309
|
[18] |
Papanastasiou P, Ottaviani C and Pirandola S 2018 Phys. Rev. A 98 032314
|
[19] |
Lu Z, Shi J H and Li F G 2017 Chin. Phys. B 26 040304
|
[20] |
Qi B, Evans P G and Grice W P 2018 Phys. Rev. A 97 012317
|
[21] |
Wu X, Wang Y, Li S, Zhang W, Huang D and Guo Y 2019 Quantum Inf. Process 18 372
|
[22] |
Usenko V C and Filip R 2010 Phys. Rev. A 81 022318
|
[23] |
Jacobsen C S, Gehring T and Andersen U L 2015 Entropy 17 4654
|
[24] |
Blandino R, Leverrier A, Barbieri M, Etesse J, Grangier P and Tualle-Brouri R 2012 Phys. Rev. A 86 012327
|
[25] |
Fiurášek J and Cerf N J 2012 Phys. Rev. A 86 060302
|
[26] |
Fossier S, Diamanti E, Debuisschert T, Tualle-Brouri R and Grangier P 2009 J. Phys. B-At. Mol. Opt. Phys. 42 114014
|
[27] |
Haw J Y, Zhao J, Dias J, Assad S M, Bradshaw M, Blandino R, Symul T, Ralph T C and Lam P K 2016 Nat. Commun. 7 13222
|
[28] |
Yang F and Qiu D 2020 Quantum Inf. Process 19 99
|
[29] |
Wang T, Yu S, Zhang Y C, Gu W and Guo H 2014 Phys. Lett. A 378 2808
|
[30] |
Chen L Q, Sheng Y B and Zhou L 2019 Chin. Phys. B 28 010302
|
[31] |
Walk N, Lund A P and Ralph T C 2013 New J. Phys. 15 073014
|
[32] |
Ye W, Zhong H, Liao Q, Huang D, Hu L and Guo Y 2019 Opt. Express 27 17186
|
[33] |
Osorio C I, Bruno N, Sangouard N, Zbinden H, Gisin N and Thew R T 2012 Phys. Rev. A 86 023815
|
[34] |
Zhao J, Dias J, Haw J Y, Symul T, Bradshaw M, Blandino R, Ralph T, Assad S M and Lam P K 2017 Optica 4 1421
|
[35] |
Zhou J, Shi R, Feng Y, Shi J and Guo Y 2019 J. Phys. A-Math. Theor. 52 245303
|
[36] |
Pirandola S, Braunstein S L and Lloyd S 2008 Phys. Rev. Lett. 101 200504
|
[37] |
Guo Y, Ye W, Zhong H and Liao Q 2019 Phys. Rev. A 99 032327
|
[38] |
Zhang S J, Xiao C, Zhou C, Wang X, Yao J S, Zhang H L and Bao W S 2020 Chin. Phys. B 29 20301
|
[39] |
Jouguet P, Kunz-Jacques S, Diamanti E and Leverrier A 2012 Phys. Rev. A 86 032309
|
[40] |
Chrzanowski H M, Walk N, Assad S M, Janousek J, Hosseini S, Ralph T C, Symul T and Lam P K 2014 Nat. Photon. 8 333
|
[41] |
Wang M J and Pan W 2010 Phys. Lett. A 374 2434
|
[42] |
Milicevic M, Feng C, Zhang L M and Gulak P G 2017 EPJ. Quantum Technol. 4 1
|
[43] |
Liu X, Zhu C, Chen N and Pei C 2018 Quantum Inf. Process 17 304
|
[44] |
Sheikh F, Zarifeh N and Kaiser T 2016 IET Microw. Antennas Propag. 10 1435
|
[45] |
Han C, Bicen A O and Akyildiz I F 2014 IEEE Trans. Wirel. Commun. 14 2402
|
[46] |
Eom B H, Day P K, LeDuc H G and Zmuidzinas J 2012 Nat. Phys. 8 623
|
[47] |
Pogorzalek S, Fedorov K G, Xu M et al. 2019 Nat. Commun. 10 1
|
[48] |
Di Candia R, Fedorov K G, Zhong L, Felicetti S, Menzel E P, Sanz M, Deppe F, Marx A, Gross R and Solano E 2015 EPJ. Quantum Technol. 2 25
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|