Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 028504    DOI: 10.1088/1674-1056/ac2b91
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Development of series SQUID array with on-chip filter for TES detector

Wentao Wu(伍文涛)1,2,†, Zhirong Lin(林志荣)1,2,3, Zhi Ni(倪志)1,2,3, Peizhan Li(李佩展)4,5, Tiantian Liang(梁恬恬)1,2,3, Guofeng Zhang(张国峰)1,2, Yongliang Wang(王永良)1,2, Liliang Ying(应利良)1,2, Wei Peng(彭炜)1,2,3, Wen Zhang(张文)4, Shengcai Shi(史生才)4, Lixing You(尤立星)1,2,3, and Zhen Wang(王镇)1,2,3
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology(SIMIT), Chinese Academy of Sciences(CAS), Shanghai 200050, China;
2 CAS Center for Excellence in Superconducting Electronics(CENSE), Shanghai 200050, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China;
5 University of Science and Technology of China, Hefei 230026, China
Abstract  A cold preamplifier based on superconducting quantum interference devices (SQUIDs) is currently the preferred readout technology for the low-noise transition edge sensor (TES). In this work, we have designed and fabricated a series SQUID array (SSA) amplifier for the TES detector readout circuit. In this SSA amplifier, each SQUID cell is composed of a first-order gradiometer formed using two equally large square washers, and an on-chip low pass filter (LPF) as a radio-frequency (RF) choke has been developed to reduce the Josephson oscillation interference between individual SQUID cells. In addition, a highly symmetric layout has been designed carefully to provide a fully consistent embedded electromagnetic environment and achieve coherent flux operation. The measured results show smooth V-Φ characteristics and a swing voltage that increases linearly with increasing SQUID cell number N. A white flux noise level as low as 0.28 μΦ0/Hz1/2 is achieved at 0.1 K, corresponding to a low current noise level of 7 pA/Hz1/2. We analyze the measured noise contribution at mK-scale temperatures and find that the dominant noise derives from a combination of the SSA intrinsic noise and the equivalent current noise of the room temperature electronics.
Keywords:  SSA amplifier      TES detectors      on-chip low pass filter (LPF)      noise contribution  
Received:  19 July 2021      Revised:  08 September 2021      Accepted manuscript online:  30 September 2021
PACS:  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
  85.25.Oj (Superconducting optical, X-ray, and γ-ray detectors (SIS, NIS, transition edge))  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304003).
Corresponding Authors:  Wentao Wu     E-mail:  wentaowu@mail.sim.ac.cn

Cite this article: 

Wentao Wu(伍文涛), Zhirong Lin(林志荣), Zhi Ni(倪志), Peizhan Li(李佩展), Tiantian Liang(梁恬恬), Guofeng Zhang(张国峰), Yongliang Wang(王永良), Liliang Ying(应利良), Wei Peng(彭炜), Wen Zhang(张文), Shengcai Shi(史生才), Lixing You(尤立星), and Zhen Wang(王镇) Development of series SQUID array with on-chip filter for TES detector 2022 Chin. Phys. B 31 028504

[1] Clarke J and Braginski A I 2004 The SQUID Handbook, Vol. 1 (New Jersey:John Wiley & Sons)
[2] Fagaly R L 2006 Rev. Sci. Instrum. 77 101101
[3] Fleischmann A, Enss C and Seidel G 2005 Top. Appl. Phys. 99 151
[4] Irwin K D and Hilton G C 2005 Top. Appl. Phys. 99 63
[5] Irwin K D, Hilton G C, Wollman D A and Martinis J M 1998 J. Appl. Phys. 83 3978
[6] Joel N U and Douglas A B 2015 Supercond. Sci. Technol. 28 084003
[7] Kin L and Stephen P H 1997 IEEE Trans. Appl. Supercond. 7 3217
[8] Stawiasz K G and Ketchen M B 1993 IEEE Trans. Appl. Supercond. 3 1808
[9] Kin L and Stephen P H 1995 IEEE Trans. Appl. Supercond. 5 3255
[10] Zhang G F, Zhang Y I, Hans-Joachim K, et al. 2013 Chin. Phys. Lett. 30 018501
[11] Han H X, Zhang G F, Zhang X, et al. 2019 Acta Phys. Sin. 68 138501 (in Chinese)
[12] Zhao C, He G F, Zhang Q Y, et al. 2015 Acta Phys. Sin. 64 128501 (in Chinese)
[13] Barry M and Warren J 1983 IEEE Trans. Magnet. 19 303
[14] Drung D, Aßmann C, Beyer J, Kirste A, Peters M, Ruede F and Schurig Th 2007 IEEE Trans. Appl. Supercond. 17 699
[15] Richard P W and Martinis J M 1991 IEEE Trans. Magnet. 27 2924
[16] Fuminori H, Naoko K and Masao K 1999 IEEE Trans. Appl. Supercond. 9 2923
[17] Boris C, Daniel J and Christopher J M 2015 Appl. Phys. Lett. 107 162602
[18] Martin E H, et al. 2001 IEEE Trans. Appl. Supercond. 11 1251
[19] Jukka K and Antti A 1987 J. Low Temp. Phys. 68 269
[20] Tapani R, Heikki S and Robin C 1992 J. Appl. Phys. 71 6150
[21] Faris S M and Valsamakis E A 1981 J. Appl. Phys. 52 915
[22] Samantha I D, John R K and Kathryn A M 2019 Sensors 20 204
[23] Ying L L, Zhang X, Niu M H, Ren J, Peng W, Masaaki Meazawa and Wang Z 2021 IEEE Trans. Appl. Supercond. 31 5
[24] Drung D, Hinnrichs C and Barthelmess H 2006 Supercond. Sci. Technol. 19 235
[25] Dietmar D 2006 IEEE/CSC & ESAS Superconductivity News Forum (global edition)
[26] Wen Z, et al. 2019 IEEE Trans. Appl. Supercond. 29 2100505
[1] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[2] Residual field suppression for magnetocardiography measurement inside a thin magnetically shielded room using bi-planar coil
Kang Yang(杨康), Hong-Wei Zhang(张宏伟), Qian-Nian Zhang(张千年),Jun-Jun Zha(查君君), and Deng-Chao Huang(黄登朝). Chin. Phys. B, 2022, 31(7): 070701.
[3] Fabrication of Josephson parameter amplifier and its applicationin squeezing vacuum fluctuations
Pengtao Song(宋鹏涛), Xueyi Guo(郭学仪), Kai Xu(许凯), Xiaohui Song(宋小会), Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Hekang Li(李贺康), Luhong Su(苏鹭红), Yirong Jin(金贻荣), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(12): 128502.
[4] Fabrication and characterization of all-Nb lumped-element Josephson parametric amplifiers
Hang Xue(薛航), Zhirong Lin(林志荣), Wenbing Jiang(江文兵), Zhengqi Niu(牛铮琦), Kuang Liu(刘匡), Wei Peng(彭炜), and Zhen Wang(王镇). Chin. Phys. B, 2021, 30(6): 068503.
[5] Controllable microwave frequency comb generation in a tunable superconducting coplanar-waveguide resonator
Shuai-Peng Wang(王帅鹏), Zhen Chen(陈臻), and Tiefu Li(李铁夫). Chin. Phys. B, 2021, 30(4): 048501.
[6] Compact NbN resonators with high kinetic inductance
Xing-Yu Wei(魏兴雨), Jia-Zheng Pan(潘佳政), Ya-Peng Lu(卢亚鹏), Jun-Liang Jiang(江俊良), Zi-Shuo Li(李子硕), Sheng Lu(卢盛), Xue-Cou Tu(涂学凑), Qing-Yuan Zhao(赵清源), Xiao-Qing Jia(贾小氢), Lin Kang(康琳), Jian Chen(陈健), Chun-Hai Cao(曹春海), Hua-Bing Wang(王华兵), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2020, 29(12): 128401.
[7] Concept study of measuring gravitational constant using superconducting gravity gradiometer
Xing Bian(边星), Ho Jung Paik, Martin Vol Moody. Chin. Phys. B, 2018, 27(8): 080401.
[8] Characterization of barrier-tunable radio-frequency-SQUID for Maxwell's demon experiment
Gang Li(李刚), Suman Dhamala, Hao Li(李浩), Jian-She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2018, 27(6): 068501.
[9] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[10] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[11] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[12] Design of a gap tunable flux qubit with FastHenry
Naheed Akhtar, Yarui Zheng(郑亚锐), Mudassar Nazir, Yulin Wu(吴玉林), Hui Deng(邓辉), Dongning Zheng(郑东宁), Xiaobo Zhu(朱晓波). Chin. Phys. B, 2016, 25(12): 120305.
[13] An efficient calibration method for SQUID measurement system using three orthogonal Helmholtz coils
Hua Li(李华), Shu-Lin Zhang(张树林), Chao-Xiang Zhang(张朝祥), Xiang-Yan Kong(孔祥燕), Xiao-Ming Xie(谢晓明). Chin. Phys. B, 2016, 25(6): 068501.
[14] Frequency-tunable transmon in a three-dimensional copper cavity
Pan Jia-Zheng (潘佳政), Cao Zhi-Min (曹志敏), Fan Yun-Yi (范云益), Zhou Yu (周渝), Lan Dong (兰栋), Liu Yu-Hao (刘宇浩), Chen Zhi-Ping (陈志平), Li Yong-Chao (李永超), Cao Chun-Hai (曹春海), Xu Wei-Wei (许伟伟), Kang Lin (康琳), Chen Jian (陈健), Yu Hai-Feng (于海峰), Yu Yang (于扬), Sun Guo-Zhu (孙国柱), Wu Pei-Heng (吴培亨). Chin. Phys. B, 2015, 24(11): 110301.
[15] Low-Tc direct current superconducting quantum interference device magnetometer-based 36-channel magnetocardiography system in a magnetically shielded room
Qiu Yang (邱阳), Li Hua (李华), Zhang Shu-Lin (张树林), Wang Yong-Liang (王永良), Kong Xiang-Yan (孔祥燕), Zhang Chao-Xiang (张朝祥), Zhang Yong-Sheng (张永升), Xu Xiao-Feng (徐小峰), Yang Kang (杨康), Xie Xiao-Ming (谢晓明). Chin. Phys. B, 2015, 24(7): 078501.
No Suggested Reading articles found!