Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 114206    DOI: 10.1088/1674-1056/abb3e9
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

All-fiberized very-large-mode-area Yb-doped fiber based high-peak-power narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate

Min Yang(杨敏), Ping-Xue Li(李平雪), Dong-Sheng Wang(王东生), Ke-Xin Yu(于可新), Xue-Yan Dong(董雪岩), Ting-Ting Wang(王婷婷), Chuan-Fei Yao(姚传飞), and Wei-Xin Yang(杨卫鑫)
Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China
Abstract  

We demonstrate an all-fiberized narrow-linewidth nanosecond amplifier with high peak power, tunable pulse width, and repetition rate. A fiber-coupled narrow-linewidth laser diode operating at 1064.1 nm is employed as the seed source, which is gain-switched to generate nanosecond pulses with tunable pulse widths of 1–200 ns and tunable repetition rates of 10 Hz–100 kHz. By utilizing a very-large-mode-area Yb-doped fiber with a core diameter of 50 μm in the power amplifier, thresholds of the stimulated Brillouin scattering at different pulse widths and repetition rates are increased. The maximum average power reaches 30.8 W at the pulse width of 4 ns and a repetition rate of 100 kHz, corresponding to an optical-to-optical conversion efficiency of ∼55.2%. Pulse energy and peak power are calculated to be 0.2 mJ and 50 kW, respectively, which are limited by stimulated Brillouin scattering. The 3-dB spectral linewidth remains around 0.05 nm during the power scaling process. The stimulated Brillouin scattering limited output powers at different pulse widths and repetition rates are investigated. Peak power of 47.5 kW (0.19 mJ) is obtained for the 4 ns pulses at a repetition rate of 50 kHz, which is nearly the same as that of 4 ns pulses at 100 kHz. When the pulse width of the seed source is increased to 8 ns, peak powers/pulse energies are decreased to 19.6 kW/0.11 mJ and 13.3 kW/0.08 mJ at repetition rates of 50 kHz and 100 kHz, respectively.

Keywords:  nanosecond      all-fiber amplifier      very-large mode area      tunable pulse width and repetition rate  
Received:  10 April 2020      Revised:  26 July 2020      Accepted manuscript online:  01 September 2020
Fund: the National Natural Science Foundation of China (Grant No. 61675009) and the Beijing Natural Science Foundation Program, China, and Scientific Research Key Program of Beijing Municipal Education Commission, China (Grant No. KZ201910005006).
Corresponding Authors:  Corresponding author. E-mail: pxli@bjut.edu.cn第一通讯作者   

Cite this article: 

Min Yang(杨敏), Ping-Xue Li(李平雪), Dong-Sheng Wang(王东生), Ke-Xin Yu(于可新), Xue-Yan Dong(董雪岩), Ting-Ting Wang(王婷婷), Chuan-Fei Yao(姚传飞), and Wei-Xin Yang(杨卫鑫) All-fiberized very-large-mode-area Yb-doped fiber based high-peak-power narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate 2020 Chin. Phys. B 29 114206

Fig. 1.  

Schematic diagram of the narrow-linewidth nanosecond fiber MOPA. LD, laser diode; BPF, band-pass filter; WDM, wavelength division multiplexer; YDF, Yb-doped fiber; FBG: fiber Bragg grating; OC, optical coupler; ISO, isolator; DCF, double-clad fiber; CMS, cladding mode stripper.

Fig. 2.  

Spectrum of the backward propagating pulses.

Fig. 3.  

Backward propagating pulses at 1.4 W (a) and 17.8 W (b).

Fig. 4.  

Output average powers of the main amplifier at different pulse widths and repetition rates.

Fig. 5.  

The M2 factor at the maximum output power of 30.8 W.

Fig. 6.  

Seed pulses and amplified pulses of the main amplifier seeded by pulses of 4 ns/50 kHz (a), 4 ns/100 kHz (b), 8 ns/50 kHz (c), 8 ns/100 kHz (d). Insets: pulse sequences at each pulse width and repetition rate.

Fig. 7.  

Output spectrums of the main amplifier seeded by 4 ns pulses with the PRF of 100 kHz. (a) Spectral distribution at 30.8 W, inset: enlarged spectrum; (b) evolutions of spectrum.

[1]
Niu L Q, Gao C X, He H D, Feng L, Cao Z Y, Sun C D, Zhu S L 2013 Laser Phys. 23 95103 DOI: 10.1088/1054-660X/23/9/095103
[2]
Xiao Q R, Yan P, Sun J Y, Chen X, Ren H C, Gong M L 2014 Chin. Phys. B 23 104221 DOI: 10.1088/1674-1056/23/10/104221
[3]
Zhang T, Zhang W G, Cai Y J, Hu X H, Feng Y, Wang Y S, Yu J 2019 Acta Phys. Sin. 68 234204 in Chinese DOI: 10.7498/aps.68.20190925
[4]
Su R T, Wang X L, Zhou P, Xu X J 2013 Laser Phys. Lett. 10 015105 DOI: 10.1088/1612-2011/10/1/015105
[5]
Su R T, Zhang P F, Zhou P, Xiao H, Wang X L, Duan L, Lv P, Xu X J 2018 Acta Phys. Sin. 67 154202 in Chinese DOI: 10.7498/aps.67.20172679
[6]
Prevost F, Lombard L, Primot J, Ramirez L P, Bigot L, Bouwmans G, Hanna M 2017 Opt. Express 25 9528 DOI: 10.1364/OE.25.009528
[7]
Dolfi-Bouteyre A, Canat G, Lombard L, Valla M, Durecu A, Besson C 2017 Opt. Eng. 56 31217 DOI: 10.1117/1.OE.56.3.031217
[8]
Lombard L, Dolfi-Bouteyre A, Besson C, Augere B, Bourdon P, Durecu A, Goular D, LeGouet J, Planchat C, Renard W, Valla M, Canat G 2015 Proc. SPIE 9645 96450B DOI: 10.1117/12.2197350
[9]
Feng L T, Zhao P E, Shi X D, Jin G H, Yang Z H, Zhou D F, Hou T J 2019 Infrared Laser Eng. 48 0406005 in Chinese DOI: 10.3788/irla201948.0406005
[10]
Ma J Q 2010 Influence of Pump Laser Line Width in Frequency Conversion Master Dissertation Changsha National University of Defense Technology of China (in Chinese) https://kns8.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&dbname=CMFD2012&filename=1011280011.nh&v=bb%25mmd2BzS1NTERtq9B4zUJt0iQklwbmDQ3cjV5FK5tAAsR7VPi4FXhl5GT02GwL79UWz
[11]
Wang Y S, Ma Y, Sun Y H, Wang Y, Chang Z, Peng W J, Yang X B, Zhu R H, Zhang K, Tang C 2019 Chin. J. Lasers 46 1215001 in Chinese DOI: 10.3788/CJL201946.1215001
[12]
Cui Y L, Tang N, Zhou Z Y, Li Z X, Wang Z F 2019 Opt. Fiber Technol. 52 101938 DOI: 10.1016/j.yofte.2019.101938
[13]
Dilley C E, Stephen M A, Savage-Leuchs M P 2007 Opt. Express 15 14389 DOI: 10.1364/OE.15.014389
[14]
Wellmann F, Steinke M, Meylahn F, Bode N, Willke B, Overmeyer L, Neumann J, Kracht D 2019 Opt. Express 27 28523 DOI: 10.1364/OE.27.028523
[15]
Wang X L, Zhou P, Leng J Y, Du W B, Xu X J 2013 Chin. Phys. B 22 044205 DOI: 10.1088/1674-1056/22/4/044205
[16]
Teodoro F D, Morais J, McComb T S, Hemmat M K, Cheung E C, Weber M, Moyer R 2013 Opt. Lett. 38 2162 DOI: 10.1364/OL.38.002162
[17]
Zhu R, Wang J T, Zhou J, Liu J Q, Chen W B 2012 Chin. Opt. Lett. 10 091402 http://www.clp.ac.cn/EN/Article/OJ75efb99a2f0911f1
[18]
Ran Y, Su R T, Ma P F, Wang X L, Lv H B, Zhou P, Si L 2015 Opt. Express 23 25896 DOI: 10.1364/OE.23.025896
[19]
McComb T S, McCal D, Farrow R, Lowder T L, Logan D, Green J, Kutscha T N, Ye C G, Aallos V, Koponen J J, Fanning G 2014 Proc. SPIE 8961 896112 DOI: 10.1117/12.2037974
[20]
Su R T, Zhou P, Wang X L, Tao R M, Xu X J 2014 High Power Laser Sci. Eng. 2 e3 DOI: 10.1017/hpl.2014.2
[21]
Patokoski K, Rissanen J, Noronen T, Gumenyuk R, Chamorovskii Y, Filippov V, Toivonen J 2019 Opt. Express 27 31532 DOI: 10.1364/OE.27.031532
[22]
Cha Y H, Kim Y, Park H, Lim G, Ko K H, Kim T S, Jeong D Y 2017 J. Korean Phys. Soc. 70 973 DOI: 10.3938/jkps.70.973
[23]
Zhang H W, Wang X L, Zhou P, Gong Z Q, Xu X J 2012 Appl. Opt. 51 6933 DOI: 10.1364/AO.51.006933
[24]
Fang Q, Shi W, Fan J L 2014 IEEE Photon. Technol. Lett. 26 1676 DOI: 10.1109/LPT.2014.2330766
[25]
Agrawal G P 2010 Nonlinear Fiber Optics, 4th edn & Applications of Nonlinear Fiber Optics 2 Beijing Beijing World Publishing Corporation 246 in Chinese
[26]
Liu C, Liu J, Zhang Y J, Hou Y B, Qi S X, Feng X, Wang P 2017 Opt. Express. 25 9569 DOI: 10.1364/OE.25.009569
[27]
Huang L, Ma P F, Meng D, Li L, Tao R M, Su R T, Ma Y X, Zhou P 2018 High Power Laser Sci. Eng. 6 e42 DOI: 10.1017/hpl.2018.36
[28]
Smith R G 1972 Appl. Opt. 11 2489 DOI: 10.1364/AO.11.002489
[29]
Kobyakov A, Sauer M, Chowdhury D 2010 Adv. Opt. Photon. 2 1 DOI: 10.1364/AOP.2.000001
[30]
Hung J H, Gao Y, Yan H J, Sato K, Yamada H, Peng L H, Nemoto T, Yokoyama H 2019 Appl. Phys. Express. 12 082002 DOI: 10.7567/1882-0786/ab2c2a
[31]
Shangguan M J, Xia H Y, Wang C, Qiu J W, Shentu G L, Zhang Q, Dou X K, Pan J W 2016 Opt. Express 24 19322 DOI: 10.1364/OE.24.019322
[32]
Wang N, Wang R, Mo D, Li G Z, Zhang K S, Wu Y R 2018 Appl. Opt. 57 230 DOI: 10.1364/AO.57.000230
[33]
Lu Z Y, Zhou Y, Sun J F, Luan Z, Wang L J, Xu Q, Li G Y, Zhang G, Liu L R 2017 Chin. J. Lasers 44 0110001 DOI: 10.3788/CJL201744.0110001
[1] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[2] The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞). Chin. Phys. B, 2022, 31(3): 034207.
[3] Spatial characteristics of nanosecond pulsed micro-discharges in atmospheric pressure He/H2O mixture by optical emission spectroscopy
Chuanjie Chen(陈传杰), Zhongqing Fang(方忠庆), Xiaofang Yang(杨晓芳), Yongsheng Fan(樊永胜), Feng Zhou(周锋), and Rugang Wang(王如刚). Chin. Phys. B, 2022, 31(2): 025204.
[4] High efficiency sub-nanosecond electro-optical Q-switched laser operating at kilohertz repetition frequency
Xin Zhao(赵鑫), Zheng Song(宋政), Yuan-Ji Li(李渊骥), Jin-Xia Feng(冯晋霞), Kuan-Shou Zhang(张宽收). Chin. Phys. B, 2020, 29(8): 084205.
[5] Dynamic stall control over an airfoil by NS-DBD actuation
He-Sen Yang(杨鹤森), Guang-Yin Zhao(赵光银)†, Hua Liang(梁华)‡, and Biao Wei(魏彪). Chin. Phys. B, 2020, 29(10): 105203.
[6] 2-μm mode-locked nanosecond fiber laser based on MoS2 saturable absorber
Xiao-Fa Wang(王小发), Xiao-Ling Peng(彭晓玲), Qiu-Xia Jiang(姜秋霞), Xiao-Hui Gu(顾小辉), Jun-Hong Zhang(张俊红), Xue-Feng Mao(毛雪峰), Su-Zhen Yuan(袁素贞). Chin. Phys. B, 2017, 26(11): 114205.
[7] High-energy femtosecond Yb-doped all-fiber monolithic chirped-pulse amplifier at repetition rate of 1 MHz
Zhi-Guo Lv(吕志国), Hao Teng(滕浩), Li-Na Wang(王立娜), Jun-Li Wang(王军利), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(9): 094208.
[8] Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation
Kang Chen(陈康) and Hua Liang(梁华). Chin. Phys. B, 2016, 25(2): 024703.
[9] Numerical analyses on optical limiting performances of chloroindium phthalocyanines with different substituent positions
Yu-Jin Zhang(张玉瑾), Xing-Zhe Li(李兴哲), Ji-Cai Liu(刘纪彩), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2016, 25(1): 013302.
[10] A comparison of single shot nanosecond and femtosecond polarization-resolved laser-induced breakdown spectroscopy of Al
Nakimana Agnes, Tao Hai-Yan (陶海岩), Hao Zuo-Qiang (郝作强), Sun Chang-Kai (孙长凯), Gao Xun (高勋), Lin Jing-Quan (林景全). Chin. Phys. B, 2013, 22(1): 014209.
[11] Experimental investigation of nanosecond discharge plasma aerodynamic actuation
Wu Yun(吴云), Li Ying-Hong(李应红), Jia Min(贾敏), Liang Hua(梁华), and Song Hui-Min(宋慧敏) . Chin. Phys. B, 2012, 21(4): 045202.
[12] The effect of polymer type on electric breakdown strength on a nanosecond time scale
Zhao Liang(赵亮), Su Jian-Cang(苏建仓), Pan Ya-Feng(潘亚峰), and Zhang Xi-Bo(张喜波) . Chin. Phys. B, 2012, 21(3): 033102.
[13] Measurement and control for a repetitive nanosecond-pulse breakdown experiment in polymer films
Shao Tao(邵涛), Zhang Cheng(章程), Long Kai-Hua(龙凯华), Wang Jue(王珏), Zhang Dong-Dong(张东东), and Yan Ping(严萍). Chin. Phys. B, 2010, 19(4): 040601.
[14] Numerical simulation of super-short pulsed discharge in Helium with particle-in-cell Monte--Carlo collisions technique
Shi Feng(石锋), Zhang Li-Li(张莉丽), and Wang De-Zhen(王德真). Chin. Phys. B, 2009, 18(3): 1177-1180.
[15] Experimental study of polarity dependence in repetitive nanosecond-pulse breakdown
Shao Tao(邵涛), Sun Guang-Sheng(孙广生), Yan Ping(严萍), Wang Jue(王珏), Yuan Wei-Qun(袁伟群), and Zhang Shi-Chang(张适昌). Chin. Phys. B, 2007, 16(3): 778-783.
No Suggested Reading articles found!