Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 074208    DOI: 10.1088/1674-1056/abf105

Modeling of cascaded high isolation bidirectional amplification in long-distance fiber-optic time and frequency synchronization system

Kuan-Lin Mu(穆宽林)1, Xing Chen(陈星)2, Zheng-Kang Wang(王正康)1, Yao-Jun Qiao(乔耀军)1,†, and Song Yu(喻松)2,‡
1 The State Key Laboratory of Information Photonics and Optical Communications, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  We propose a physical model of estimating noise and asymmetry brought by high isolation Bi-directional erbium-doped fiber amplifiers (Bi-EDFAs), no spontaneous lasing even with high gain, in longdistance fiber-optic time and frequency (T/F) synchronization system. It is found that the Rayleigh scattering noise can be suppressed due to the high isolation design, but the amplified spontaneous emission (ASE) noise generated by the high isolation Bi-EDFA and the bidirectional asymmetry of the transmission link caused by the high isolation Bi-EDFA will deteriorate the stability of the system. The calculated results show that under the influence of ASE noise, the frequency instability of a 1200 km system composed of 15 high isolation Bi-EDFAs is 1.773×10-13/1 s. And the instability caused by asymmetry is 2.6064×10-16/30000-35000 s if the total asymmetric length of the bidirectional link length is 30 m. The intensity noises originating from the laser and detector, the transfer delay fluctuations caused by the variation in ambient temperature and the jitter in laser output wavelength are also studied. The experiment composed of three high isolation Bi-EDFAs is done to confirm the theoretical analysis. In summary, the paper shows that the short-term instability of the T/F synchronization system composed of high isolation Bi-EDFAs is limited by the accumulation of ASE noise of amplifiers and the laser frequency drift, while the long-term instability is limited by the periodic variation in ambient temperature and the asymmetry of the amplifiers. The research results are useful for pointing out the direction to improve the stability of the fiber-optic T/F synchronization system.
Keywords:  time and frequency synchronization      erbium-doped fiber amplifier      instability      Allan deviation  
Received:  18 February 2021      Revised:  15 March 2021      Accepted manuscript online:  23 March 2021
PACS:  42.65.Yj (Optical parametric oscillators and amplifiers)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.79.-e (Optical elements, devices, and systems)  
  07.60.Vg (Fiber-optic instruments)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61701040, 61771062, and 61871044), the Youth Program of the National Natural Science Foundation of China (Grant No. 61901046), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2019XD-A18 and 2019PTB-004), and the Youth Research and Innovation Program of BUPT (Grant No. 2017RC13).
Corresponding Authors:  Yao-Jun Qiao, Song Yu     E-mail:;

Cite this article: 

Kuan-Lin Mu(穆宽林), Xing Chen(陈星), Zheng-Kang Wang(王正康), Yao-Jun Qiao(乔耀军), and Song Yu(喻松) Modeling of cascaded high isolation bidirectional amplification in long-distance fiber-optic time and frequency synchronization system 2021 Chin. Phys. B 30 074208

[1] Amemiya M, Imae M, Fujii Y, Suzuyama, T, Hong F L and Takamoto M 2010 IEEE Trans. Instrum. Meas. 59 631
[2] Terra O, Groche G and Schnatz H 2010 Opt. Express 18 16102
[3] Lopez O, Kanj A, Pottie P E, Rovera D, Achkar J, Chardonnet C, Amy-Klein A and Santarelli G 2012 Appl. Phys. B 110 3
[4] Kim J, Schnatz H, Wu D S, Marra G, Richardson D J and Slavík R 2015 Opt. Lett. 40 4198
[5] Chen X, Lu J L, Cui Y F, Zhang J, Lu X, Tian X S, Ci C, Liu B, Wu H, Tang T S, Shi K B and Zhang Z G 2015 Sci. Rep. 5 18343
[6] Shang J M, Jiang T W, Liu C X, Chen X, Lu Y M, Yu S and Guo H 2018 Opt. Express 26 33888
[7] Liu C X, Jiang T W, Chen M S, Yu S, Wu R H, Shang J M, Duan J T and Gu W Y 2016 Opt. Express 24 23376
[8] Śliwczyński Ł, Krehlik P, Czubla A, Buczek Łand Lipiński M 2013 Metrologia 50 133
[9] Zhang H, Wu G L, Hu L, Li X M and Chen J P 2015 IEEE Photon. J. 7 1
[10] Raupach S M F, Koczwara A and Grosche G 2014 Opt. Express 22 26537
[11] Calonico D, Bertaccho E K, Calosso C E, Clivati C, Costanzo G A, Frittelli M, Godone A, Mura A, Poli N, Sutyrin D V, Tino G, Zucco M E and Levi F 2014 Appl. Phys. B 117 979
[12] Zhang C, Chen B Q and Li Z Y 2016 Chin. Phys. B 25 095203
[13] Chen L, Yang F R, Su T, Bao W Y, Yan B, Chen S and Li R B 2017 Chin. Phys. B 26 025205
[14] Chen X, Zhang J, Lu J L, Lu X, Tian X S, Liu B, Wu H, Tang T S, Shi K B and Zhang Z G 2015 Opt. Lett. 40 371
[15] Śliwczyński Ł, Krehlik P, Buczek Łand Lipiński M 2012 IEEE Trans. Instrum. Meas. 61 2573
[16] Śliwczyński Łand Ko łodziej J 2013 IEEE Trans. Instrum. Meas. 62 253
[17] Li X Y, Zhu Y, Lu L, Li D L and Zeng Z L 2014 Journal of Military Communications Technology 35 17
[18] Śliwczyński Ł, Krehlik P and Lipiński M 2010 Meas. Sci. Technol. 21 075302
[19] Li D L, Cheng Q M, Zhang B F, Lu L, Lei P J and Li X Y 2014 Laser & Optoelectronics Progress 51 010602 (in Chinese)
[20] Primas L E, Logan R T and Lutes G F 1989 IEEE 43rd Annual Symposium on Frequency Control Denver, CO, USA, May 31-June 2, 1989, p. 202
[21] Yang F 2013 Studies on Single-frequency Fiber Laser and Fiber-optic Joint Time and Frequency Transfer (Ph.D. Dissertation) (Shanghai: Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences) (in Chinese)
[22] Amemiya M, Imae M, Fujii Y, Suzuyama T and Ohshima S 2008 IEEE Trans. Instrum. Meas. 57 878
[23] Chen W, Cheng N, Liu Q, Wang J L, Feng Z T, Fei Y, Han S L, Gui Y Z and Cai H W 2016 Chinese J. Lasers 43 0706001
[24] Kikuchi K 1989 IEEE J. Quantum Elect. 25 684
[25] Liu Q, Chen W, Xu D, Cheng N, Yang F, Gui Y Z, Cai H W and Han S S 2016 Chinese J. Lasers 43 0305006
[26] Liang J X, Liu C X, Hu F, Zhou S J, Yu S and Qiao Y J 2019 Opt. Commun. 445 161
[1] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[2] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[3] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[4] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[5] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[6] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[7] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[8] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
[9] Scaling of rise time of drive current on development of magneto-Rayleigh-Taylor instabilities for single-shell Z-pinches
Xiaoguang Wang(王小光), Guanqiong Wang(王冠琼), Shunkai Sun(孙顺凯), Delong Xiao(肖德龙), Ning Ding(丁宁), Chongyang Mao(毛重阳), and Xiaojian Shu(束小建). Chin. Phys. B, 2022, 31(2): 025203.
[10] Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers
Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(12): 120401.
[11] Electromagnetic control of the instability in the liquid metal flow over a backward-facing step
Ya-Dong Huang(黄亚冬), Jia-Wei Fu(付佳维), and Long-Miao Chen(陈龙淼). Chin. Phys. B, 2022, 31(12): 124701.
[12] Ozone oxidation of 4H-SiC and flat-band voltage stability of SiC MOS capacitors
Zhi-Peng Yin(尹志鹏), Sheng-Sheng Wei(尉升升), Jiao Bai(白娇), Wei-Wei Xie(谢威威), Zhao-Hui Liu(刘兆慧), Fu-Wen Qin(秦福文), and De-Jun Wang(王德君). Chin. Phys. B, 2022, 31(11): 117302.
[13] Application of Galerkin spectral method for tearing mode instability
Wu Sun(孙武), Jiaqi Wang(王嘉琦), Lai Wei(魏来), Zhengxiong Wang(王正汹), Dongjian Liu(刘东剑), and Qiaolin He(贺巧琳). Chin. Phys. B, 2022, 31(11): 110203.
[14] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[15] Analytical model for Rayleigh—Taylor instability in conical target conduction region
Zhong-Yuan Zhu(朱仲源), Yun-Xing Liu(刘云星), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(10): 105202.
No Suggested Reading articles found!