Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 024101    DOI: 10.1088/1674-1056/23/2/024101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Role of shape of hole in transmission and negative refractive index of sandwiched metamaterials

Zhong Min (钟敏)a b, Ye Yong-Hong (叶永红)a
a Department of Physics, Nanjing Normal University, Nanjing 210023, China;
b Hezhou College, Hezhou 542899, China
Abstract  Transmission and negative refractive index (NRI) of metal–dielectric–metal (MDM) sandwiched metamaterial perforated with four kinds of shapes of holes are numerically studied. Results indicate that positions of all transmission peaks of these kinds of holes are sensitive to the shape of the hole. Under the same conditions, the circular hole can obtain the maximum NRI and the rectangular hole can obtain the maximum frequency bandwidth of NRI. Moreover, the figure of merit (FOM) of the circular hole is the maximum too. As a result, we can obtain a higher NRI and FOM metamaterial by drilling circular hole arrays on MDM metamaterial.
Keywords:  metamaterials      negative refractive index (NRI)      transmission  
Received:  12 March 2013      Revised:  16 April 2013      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  78.20.Cj  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported partially by the National Natural Science Foundation of China (Grant No. 60778041) and the Natural Science Foundation of the Jiangsu Higher Education Institutions, China (Grant No. 07KJA51001).
Corresponding Authors:  Ye Yong-Hong     E-mail:  yeyonghong@njnu.edu.cn
About author:  41.20.Jb; 78.20.Cj; 73.20.Mf; 42.25.Bs

Cite this article: 

Zhong Min (钟敏), Ye Yong-Hong (叶永红) Role of shape of hole in transmission and negative refractive index of sandwiched metamaterials 2014 Chin. Phys. B 23 024101

[1] Ebbesen T W, Lezec H J, Ghaemmi H F, Thio T and Wolf P A 1998 Nature 391 667
[2] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[3] Wang F M, Liu H, Li T, Dong Z G, Zhu S N and Zhang X 2007 Phys. Rev. E 75 016604
[4] Ye Y H and Zhang J Y 2005 Opt. Lett. 30 1521
[5] Ortuno R, Garcia-Meca C, Rodriguez-Fortuno F J, Marti J and Martinez A 2009 Phys. Rev. B 79 075425
[6] Feng H and Wang L 2010 Chin. Phys. Lett. 27 064201
[7] Zhu B, Wang Z B, Yu Z Z, Zhang Q, Zhao J M, Feng Y J and Jiang T 2009 Chin. Phys. Lett. 26 114102
[8] Zhong X Q, Chen K and Xiang A P 2013 Chin. Phys. B 22 034205
[9] Xiong H, Hong J S, Jin D L and Zhang Z M 2012 Chin. Phys. B 21 094101
[10] Gordon R, Brolo A G, McKinnon, Rajora A, Leathem B and Kavanagh 2004 Phys. Rev. Lett. 92 037401
[11] Klein Koerkamp K J, Enoch S, Segerink F B, Hulst N F and Kuipers L 2004 Phys. Rev. Lett. 92 183901
[12] Cao H and Nahata A 2004 Opt. Express 12 3664
[13] Smith D R, Schultz S, Markos P and Soukoulis C M 2002 Phys. Rev. B 65 195104
[14] Hua Y L and Li Z Y 2009 J. Appl. Phys. 105 013104
[15] Smith D R, Vier D C, Konschny T and Soukoulis C M 2005 Phys. Rev. E 71 036617
[16] Zhang S, Fan W J, Paniou N C, Malley K J, Osgood R M and Brueck S R J 2005 Phys. Rev. Lett. 95 137404
[17] Wang X D, Ye Y H, Ma J and Jiang M P 2010 Chin. Phys. Lett. 27 094101
[18] Mary A, Rodrigo S G, Garcia-Vidal F J and Martin-Moreno L 2008 Phys. Rev. Lett. 101 103902
[1] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[2] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[3] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[4] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[5] Reflection and transmission of an Airy beam in a dielectric slab
Xiaojin Yang(杨小锦), Tan Qu(屈檀), Zhensen Wu(吴振森), Haiying Li(李海英), Lu Bai(白璐), Lei Gong(巩蕾), and Zhengjun Li(李正军). Chin. Phys. B, 2022, 31(7): 074202.
[6] A high rectification efficiency Si0.14Ge0.72Sn0.14–Ge0.82Sn0.18–Ge quantum structure n-MOSFET for 2.45 GHz weak energy microwave wireless energy transmission
Dong Zhang(张栋), Jianjun Song(宋建军), Xiaohuan Xue(薛笑欢), and Shiqi Zhang(张士琦). Chin. Phys. B, 2022, 31(6): 068401.
[7] Non-volatile multi-state magnetic domain transformation in a Hall balance
Yang Gao(高阳), Jingyan Zhang(张静言), Pengwei Dou(窦鹏伟), Zhuolin Li(李卓霖), Zhaozhao Zhu(朱照照), Yaqin Guo(郭雅琴), Chaoqun Hu(胡超群), Weidu Qin(覃维都), Congli He(何聪丽), Shipeng Shen(申世鹏), Ying Zhang(张颖), and Shouguo Wang(王守国). Chin. Phys. B, 2022, 31(6): 067502.
[8] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[9] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[10] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[11] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[12] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[13] Quantum transport signatures of non-trivial topological edge states in a ring-shaped Su-Schrieffer-Heeger double-chain system
Cheng-Zhi Ye(叶成芝), Lan-Yun Zhang(张蓝云), and Hai-Bin Xue(薛海斌). Chin. Phys. B, 2022, 31(2): 027304.
[14] Stochastic optimal control for norovirus transmission dynamics by contaminated food and water
Anwarud Din and Yongjin Li(黎永锦). Chin. Phys. B, 2022, 31(2): 020202.
[15] Soliton fusion and fission for the high-order coupled nonlinear Schrödinger system in fiber lasers
Tian-Yi Wang(王天一), Qin Zhou(周勤), and Wen-Jun Liu(刘文军). Chin. Phys. B, 2022, 31(2): 020501.
No Suggested Reading articles found!