Soliton fusion and fission for the high-order coupled nonlinear Schrödinger system in fiber lasers
Tian-Yi Wang(王天一)1, Qin Zhou(周勤)2, and Wen-Jun Liu(刘文军)1,†
1 State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2 Mathematical Modeling and Applied Computation(MMAC) Research Group, Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Abstract With the rapid development of communication technology, optical fiber communication has become a key research area in communications. When there are two signals in the optical fiber, the transmission of them can be abstracted as a high-order coupled nonlinear Schrödinger system. In this paper, by using the Hirota's method, we construct the bilinear forms, and study the analytical solution of three solitons in the case of focusing interactions. In addition, by adjusting different wave numbers for phase control, we further discuss the influence of wave numbers on soliton transmissions. It is verified that wave numbers k11, k21, k31, k22, and k32 can control the fusion and fission of solitons. The results are beneficial to the study of all-optical switches and fiber lasers in nonlinear optics.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875008, 12075034, 11975001, and 11975172), the Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology (Grant No. SKL2018KF04), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2019XD-A09-3).
Corresponding Authors:
Wen-Jun Liu
E-mail: jungliu@bupt.edu.cn
Cite this article:
Tian-Yi Wang(王天一), Qin Zhou(周勤), and Wen-Jun Liu(刘文军) Soliton fusion and fission for the high-order coupled nonlinear Schrödinger system in fiber lasers 2022 Chin. Phys. B 31 020501
[1] Som B K, Gupta M R and Dasgupta B 1979 Phys. Lett.72 111 [2] Agalarov A, Zhulego V and Gadzhimuradov T 2015 Phys. Rev. E91 042909 [3] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1998 Rev. Mod. Phys.71 463 [4] Wang L L and Liu W J 2020 Chin. Phys. B29 070502 [5] Cao Q H and Dai C Q 2021 Chin. Phys. Lett.38 090501 [6] Yan Y Y and Liu W J 2021 Chin. Phys. Lett.38 094201 [7] Zhao L C, Qin Y H, Wang W L and Yang Z Y 2020 Chin. Phys. Lett.37 050502 [8] Wang B, Zhang Z and Li B 2020 Chin. Phys. Lett.37 030501 [9] Zhang Z, Yang S X and Li B 2019 Chin. Phys. Lett.36 120501 [10] Kang Z Z and Xia T C 2019 Chin. Phys. Lett.36 110201 [11] Kivshar Y S and Agrawal G P 2003 Optical Solitons:From Fibers to Photonic Crystals (San Diego:Academic Press) [12] Kivshar Y S and Luther-Davies B 1998 Phys. Rep.298 81 [13] Hasegawa A and Tappert F 1973 Appl. Phys. Lett.23 142 [14] Malomed B A, Mihalache D and Wise F 2005 J. Opt. B7 R53 [15] Agrawal G P 2005 Lect. Notes. Phys.18 2005 [16] Kodama Y and Hasegawa A 1987 IEEE. J. Quantum Electron.23 510 [17] Hasegawa A and Kodama Y 1995 Solitons in Optical Communications (Oxford:Oxford University Press) [18] Porsezian K and Nakkeeran K 1996 Phys. Rev. Lett.76 3955 [19] Gedalin M, Scott T C and Band Y 1997 Phys. Rev. Lett.78 448 [20] Liu C, Yang Z Y, Zhao L C and Yang W L 2015 Phys. Rev. E91 022904 [21] Liu C, Yang Z Y, Zhao L C, Duan L, Yang G Y and Yang W L 2016 Phys. Rev. E94 042221 [22] Wang L, Zhang J H, Liu C, Li M and Qi F H 2016 Phys. Rev. E93 062217 [23] Wang L, Zhang J H, Wang Z Q, Liu C, Li M, Qi F H and Guo R 2016 Phys. Rev. E93 012214 [24] Zhang J H, Wang L and Liu C 2017 Proc. R. Soc. A473 20160681 [25] Liu X Y, Zhang H X and Liu W J 2022 Appl. Math. Model.102 305 [26] Kanna T and Lakshmanan M 2001 Phys. Rev. Lett.86 5043 [27] Vijayajayanthi M, Kanna T and Lakshmanan M 2008 Phys. Rev. A77 013820 [28] Chakravarty S, Sauer J R and Jenkins R B 1995 Opt. Lett.20 136 [29] Zakharov V E and Schulman E I 1982 Physica D4 270 [30] Radhakrishnan R and Lakshmanan M 1995 J. Phys. A28 2683 [31] Jia T T, Gao Y T, Feng Y J, Hu L, Su J J, Li L Q and Ding C C 2019 Nonlinear Dyn.96 229 [32] Meng G Q, Pan Y S, Tan H F and Xie X Y 2018 Comput. Math. Appl.76 1535 [33] Xie X Y and Meng G Q 2019 Eur. Phys. J. Plus134 359 [34] Xie X Y and Meng G Q 2018 Chaos, Solitons and Fractals107 143 [35] Deng G F, Gao Y T and Gao X Y 2018 Wave Random Complex28 468 [36] Liu D Y and Sun W R 2018 Appl. Math. Lett.84 63 [37] Feng Y J, Gao Y T and Yu X 2018 Nonlinear Dyn.91 29 [38] Ding C C, Gao Y T, Su J J, Deng G F and Jia S L 2018 Wave Random Complex30 1 [39] Du Z, Tian B, Chai H P and Zhao X H 2020 Appl. Math. Lett.102 106110 [40] Wang D S, Yin S, Tian Y and Liu Y 2014 Appl. Math. Comput.229 296 [41] Guo R, Zhao H H and Wang Y 2016 NonlinearDyn.83 2475 [42] Hirota R 2004 The Direct Method in Soliton Theory (Cambridge:Cambridge University Press) [43] Liu W J, Yang C Y, Liu M L, Yu W T, Zhang Y J and Lei M 2017 Phys. Rev. E96 042201
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.