Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 124301    DOI: 10.1088/1674-1056/23/12/124301
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Superwide-angle acoustic propagations above the critical angles of the Snell law in liquid–solid superlattice

Zhang Sai (张赛)a, Zhang Yu (张宇)a b, Gao Xiao-Wei (高晓薇)a
a Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen 361005, China;
b State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 351005, China
Abstract  

In this paper, superwide-angle acoustic propagations above the critical angles of the Snell law in liquid–solid superlattice are investigated. Incident waves above the critical angles of the Snell law usually inevitably induce total reflection. However, incident waves with big oblique angles through the liquid–solid superlattice will produce a superwide angle transmission in a certain frequency range so that total reflection does not occur. Together with the simulation by finite element analysis, theoretical analysis by using transfer matrix method suggests the Bragg scattering of the Lamb waves as the physical mechanism of acoustic wave super-propagation far beyond the critical angle. Incident angle, filling fraction, and material thickness have significant influences on propagation. Superwide-angle propagation phenomenon may have potential applications in nondestructive evaluation of layered structures and controlling of energy flux.

Keywords:  superwide-angle      liquid–      solid      Bragg scattering      Lamb wave      superlattice  
Received:  01 April 2014      Revised:  06 May 2014      Accepted manuscript online: 
PACS:  43.25.+y (Nonlinear acoustics)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 41276040 and 11174240) and the Natural Science Foundation of Fujian Province, China (Grant No. 2012J06010).

Corresponding Authors:  Zhang Yu     E-mail:  yuzhang@xum.edu.cn

Cite this article: 

Zhang Sai (张赛), Zhang Yu (张宇), Gao Xiao-Wei (高晓薇) Superwide-angle acoustic propagations above the critical angles of the Snell law in liquid–solid superlattice 2014 Chin. Phys. B 23 124301

[1]Born M and Wolf E 2002 Principles of Optics, 7th edn. (expanded) (Cambridge: Cambridge University Press)
[2]Rose J L 1999 Ultrasonic Waves in Solid Media (Cambridge: Cambridge University Press)
[3]Snyder A L and Love J D 1983 Optical Waveguide Theory (London: Chapman and Hall)
[4]Viktorov I A 1967 Rayleigh and Lamb Waves (New York: Plenum)
[5]Su Z Q, Ye L and Lu Y 2006 J. Sound Vib. 295 753
[6]Castaings M and Cawley P 1996 J. Acoust. Soc. Am. 100 3070
[7]Finney W J 1948 J. Acoust. Soc. Am. 20 626
[8]Cai C, Zhu X F, Chen Q,Yuan Y, Liang B and Cheng J C 2011 Chin. Phys. B 20 116301
[9]Gu Z M, Liang B and Cheng J C 2013 Chin. Phys. B 22 014303
[10]Gao X W, Chen S B, Chen J B, Zheng Q H and Yang H 2012 Chin. Phys. B 21 064301
[11]Chen W, Xie Z X and Wei R 1998 Chin. Phys. Lett. 15 813
[12]Huang G, Lou S, Dai X and Yan J 1989 Chin. Phys. Lett. 6 393
[13]Chen Q, Yang X Q, Zhao X Y, Wang Z H and Zhao Y M 2012 Acta Phys. Sin. 61 044501 (in Chinese)
[14]Lü J, Zhao Z Y, Zhang Y N and Zhou C 2010 Acta Phys. Sin. 59 8662 (in Chinese)
[15]Qian Z W, Guo L H and Xiao L 2004 Chin. Phys. 13 1059
[16]Qian Z W 2001 Chin. Phys. 10 636
[17]Zhang C B, Qiu Y Y, Xi X Y and Zhang D 2009 Acta Phys.Sin. 58 3996 (in Chinese)
[18]Cui W C, Tu J, Hwang J H, Li Q, Fan T B, Zhang D, Chen J H and Chen W Z 2012 Chin. Phys. B 21 074301
[19]Zhang C B, Liu Z, Guo X S and Zhang D 2011 Chin. Phys. B 20 024301
[20]Liang B, Guo X S, Tu J, Zhang D and Cheng J C 2010 Nat. Mater. 9 989
[21]Liang B,Yuan B and Cheng J C 2009 Phys. Rev. Lett. 103 104301
[22]Zhang S and Zhang Y 2014 Chin. Sci. Bull. 59 3239
[23]Xu T, Zhu X F, Liang B, Li Y, Zou X Y and Cheng J C 2012 Appl. Phys. Lett. 101 033509
[24]Li J, Fok L,Yin X , Bartal G and Zhang X 2009 Nat. Mater. 8 931
[25]Shen M and Cao W W 2000 J. Phys. D: Appl. Phys. 33 1150
[26]Cao W W and Qi W K 1995 J. Appl. Phys. 78 4627
[27]Nishino H, Masuda S, Yoshida K, Takahashi M, Hoshino H, Ogura Y, Kitagawa H, Kusumoto J and Kanaya A 2008 Mater. Trans. 49 2861
[28]Fay R D and Fortier O V 1951 J. Acoust. Soc. Am. 23 339
[29]Luan P G and Ye Z 2001 Phys. Rev. E 63 066611
[30]Zhang Y, Li Y, Shao H , Zhong Y, Zhang S and Zhao Z 2012 Phys. Rev. E 85 066319
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Amorphous transformation of ternary Cu45Zr45Ag10 alloy under microgravity condition
Ming-Hua Su(苏明华), Fu-Ping Dai(代富平), and Ying Ruan(阮莹). Chin. Phys. B, 2022, 31(9): 098106.
[5] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[6] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[7] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[8] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[9] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[10] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[11] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[12] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[13] Copper ion beam emission in solid electrolyte Rb4Cu16I6.5Cl13.5
Tushagu Abudouwufu(吐沙姑·阿不都吾甫), Xiangyu Zhang (张翔宇), Wenbin Zuo (左文彬), Jinbao Luo(罗进宝), Yueqiang Lan(兰越强), Canxin Tian (田灿鑫), Changwei Zou(邹长伟), Alexander Tolstoguzov, and Dejun Fu(付德君). Chin. Phys. B, 2022, 31(4): 040704.
[14] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[15] Numerical study of growth competition between twin grains during directional solidification by using multi-phase field method
Chang-Sheng Zhu(朱昶胜), Ting Wang(汪婷), Li Feng(冯力), Peng Lei(雷鹏), and Fang-Lan Ma(马芳兰). Chin. Phys. B, 2022, 31(2): 028102.
No Suggested Reading articles found!