Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 124204    DOI: 10.1088/1674-1056/23/12/124204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Two-photon emission in coupled biexciton quantum dot–cavity system: Phonon-assisted model

Peng Yi-Wei (彭益炜), Yu Zhong-Yuan (俞重远), Liu Yu-Min (刘玉敏), Wu Tie-Sheng (伍铁生), Zhang Wen (张文)
State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Beijing 100876, China
Abstract  

We theoretically analyze the steady state emission spectrum and transient temporal dynamics in a coupled biexciton quantum dot (QD)–cavity system. For steady state, a phonon-assisted biexciton–exciton cascade model under continuous wave (CW) excitation is presented to explain the asymmetric QD–cavity emission spectrum intensities (intensities of cavity, exciton, and biexciton emission peak) in off-resonance condition. Results demonstrate that the electron–phonon process is crucial to the asymmetry of emission spectrum intensity. Moreover the transient characteristics of the biexciton–exciton cascade system under pulse excitation show abundant nonlinear temporal dynamic behaviors, including complicated oscillations which are caused by the four-level structure of QD model. We also reveal that under off-resonance condition the cavity outputs are slightly reduced due to the electron–phonon interaction.

Keywords:  biexciton–      exciton cascade      phonon      emission spectrum      temporal dynamic  
Received:  23 May 2014      Revised:  30 June 2014      Accepted manuscript online: 
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  78.67.Hc (Quantum dots)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61275201 and 61372037), the Beijing Municipal Excellent Ph. D. Thesis Guidance Foundation (Grant No. 20131001301), and the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China.

Corresponding Authors:  Yu Zhong-Yuan     E-mail:  yuzhongyuan30@gmail.com

Cite this article: 

Peng Yi-Wei (彭益炜), Yu Zhong-Yuan (俞重远), Liu Yu-Min (刘玉敏), Wu Tie-Sheng (伍铁生), Zhang Wen (张文) Two-photon emission in coupled biexciton quantum dot–cavity system: Phonon-assisted model 2014 Chin. Phys. B 23 124204

[1]Marlan O S and Muhammad S Z 1997 Quantum Optics (Cambridge: Cambridge University Press)
[2]Hennessy K, Badolato A, Winger M, Gerace D, Atature M, Gilde S, Falt S, Hu E L and Lmamoglu A 2007 Nature 445 896
[3]Luo Z H 2013 Acta Phys. Sin. 62 207201 (in Chinese)
[4]Hai L, Tan L, Feng J S, Xu W B and Wang B 2014 Chin. Phys. B 23 024202
[5]Zhang Y Y, Chen Q H and Zhu S Y 2013 Chin. Phys. Lett. 30 114203
[6]Shu C G, Xin X, Liu Y M, Yu Z Y, Yao W J, Wang D L and Cao G 2012 Chin. Phys. B 21 044208
[7]Elena D V, Stefano Z, Fabrice P L, Alejandro G T, Giovanna M and Carlos T 2010 Phys. Rev. B 81 035302
[8]Lin Z L and Jelena V 2010 Phys. Rev. B 81 035301
[9]Arka M, Lin Z L, Andrei F and Jelena V 2010 Phys. Rev. A 82 022301
[10]Alex H, Amir N, Pavel G and Meir O 2011 Semicond. Sci. Technol. 26 083001
[11]Yasutomo O, Satoshi I, Naoto K and Yasuhiko A 2011 Phys. Rev. Lett. 107 233602
[12]Arka M, Dirk E, Michal B and Jelena V 2012 Phys. Rev. A 85 033802
[13]Roy C and Hughes S 2011 Phys. Rev. Lett. 106 247403
[14]Luker S, Gawarecki K, Reiter D E, Grodecka G A, Axt V M, Machnikowski P and Kuhn T 2012 Phys. Rev. B 85 121302
[15]Kaer P, Nielsen T R, Lodahl P, Jauho A P and Mork J 2010 Phys. Rev. Lett. 104 157401
[16]Wilson-Rae I and Imamoğlu A 2002 Phys. Rev. B 65 235311
[17]Chen Q, Wang H L, Wang H, Gong Q and Song Z T 2013 Acta Phys. Sin. 62 226301 (in Chinese)
[18]Arka M, Erik D K, Gong Y Y, Michal B and Jelena V 2011 Phys. Rev. B 84 085309
[19]Ulrich H, Arne L, Michael K, Norman H, Andre N, Abbas M, Marek S, Max B and Jonathan J F 2009 Phys. Rev. B 80 201311
[20]Gangopadhyay G, Basu S and Ray D S 1993 Phys. Rev. A 47 1314
[21]Xue J, Zhu K D and Zheng H 2008 J. Phys.: Condens. Matter 20 325209
[22]Ulrich H 2010 Phys. Rev. B 81 155303
[23]Roy C and Hughes S 2012 Phys. Rev. B 85 115309.
[24]Dara P S M, Nikesh S D, Erik M G, Brendon W L and Ahsan N 2011 Phys. Rev. B 84 081305
[25]Roy C and Hughes S 2011 Phys. Rev. X 1 021009
[26]Lindblad G 1976 Commun. Math. Phys. 48 119.
[27]Sze M T 1999 J. Opt. B: Quantum Semiclass. Opt. 1 424
[28]Fabrice P L, Laucht A, Elena d V, Finley J J and Villas-Bôas J M 2011 Phys. Rev. B 84 195313
[29]Yasutomo O, Satoshi I, Naoto K and Yasuhiko A 1999 arXiv: 0908.0788
[30]Natsuko I, Tim B, Franco N and Yoshihisa Y 2013 Sci. Rep. 3 1180
[31]Callsen G, Carmele A, Honig G, Kindel C, Brunnmeier J, Wagner M R, Stock E, Reparaz J S, Schliwa A, Reitzenstein S, Knorr A and Hoffmann A 2013 Phys. Rev. B 87 245314
[32]Klaus M, Yvan C and Jean D 1993 J. Opt. Soc. Am. B 10 524
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[4] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[5] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[6] Polarization-dependent ultrafast carrier dynamics in GaAs with anisotropic response
Ya-Chao Li(李亚超), Chao Ge(葛超), Peng Wang(汪鹏), Shuang Liu(刘爽), Xiao-Ran Ma(麻晓冉), Bing Wang(王冰), Hai-Ying Song(宋海英), and Shi-Bing Liu(刘世炳). Chin. Phys. B, 2022, 31(6): 067102.
[7] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[8] Erratum to “ Accurate GW0 band gaps and their phonon-induced renormalization in solids”
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2022, 31(5): 059901.
[9] Growth, characterization, and Raman spectra of the 1T phases of TiTe2, TiSe2, and TiS2
Xiao-Fang Tang(唐筱芳), Shuang-Xing Zhu(朱双兴), Hao Liu(刘豪), Chen Zhang(章晨), Qi-Yi Wu(吴旗仪), Zi-Teng Liu(刘子腾), Jiao-Jiao Song(宋姣姣), Xiao Guo(郭晓), Yong-Song Wang(王永松), He Ma(马赫), Yin-Zou Zhao(赵尹陬), Fan-Ying Wu(邬钒颖), Shu-Yu Liu(刘姝妤), Kai-Hui Liu(刘开辉), Ya-Hua Yuan(袁亚华), Han Huang(黄寒), Jun He(何军), Wen Xu(徐文), Hai-Yun Liu(刘海云), Yu-Xia Duan(段玉霞), and Jian-Qiao Meng(孟建桥). Chin. Phys. B, 2022, 31(3): 037103.
[10] Raman phonon anomalies in Sr(Fe1-xCox)2As2
Yanxing Yang(杨彦兴), Hewei Zhang(张鹤巍), and Haizheng Zhuang(庄海正). Chin. Phys. B, 2022, 31(2): 027401.
[11] Advances of phononics in 2012—2022
Ya-Fei Ding(丁亚飞), Gui-Mei Zhu(朱桂妹), Xiang-Ying Shen(沈翔瀛),Xue Bai(柏雪), and Bao-Wen Li(李保文). Chin. Phys. B, 2022, 31(12): 126301.
[12] Tunable terahertz acoustic-phonon emission from monolayer molybdenum disulfide
Cheng-Xiang Zhao(赵承祥), Miao-Miao Zheng(郑苗苗), Yuan Qie(郄媛), and Fang-Wei Han(韩方微). Chin. Phys. B, 2022, 31(12): 127202.
[13] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[14] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[15] Erratum to “Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization”
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(9): 099902.
No Suggested Reading articles found!