Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 114205    DOI: 10.1088/1674-1056/23/11/114205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High-Q cavity based on gradated one-dimensional photonic crystal

Gao Yong-Hao (高永浩), Xu Xing-Sheng (许兴胜)
State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  

A high quality-factor (Q) cavity based on a one-dimensional (1D) photonic crystal with gradated elliptical holes was designed using FDTD simulation. Different gradient profiles of the mirror holes were found to correspond to different Q-values of the cavities. A simple strategy is proposed to construct high-Q cavities by using an S-shaped gradient profile for the elliptical holes' minor axes, such as a cosine function or Gaussian function. Using such a strategy, a Q value exceeding two million is obtained with only ten mirror holes in a cavity.

Keywords:  photonic crystal      high-Q cavity      gradated cavities  
Received:  05 May 2014      Revised:  10 June 2014      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.79.Gn (Optical waveguides and couplers)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61275045, 91121019, and 61021003) and the National Basic Research Program of China (Grant No. 2013CB632105).

Corresponding Authors:  Xu Xing-Sheng     E-mail:  xsxu@semi.ac.cn

Cite this article: 

Gao Yong-Hao (高永浩), Xu Xing-Sheng (许兴胜) High-Q cavity based on gradated one-dimensional photonic crystal 2014 Chin. Phys. B 23 114205

[1] Ohta R, Ota Y, Nomura M, Kumagai N, Ishida S, Iwamoto S and Arakawa Y 2011 Appl. Phys. Lett. 98 173104
[2] McCutcheon M W, Chang D E, Zhang Y A, Lukin M D and Loncar M 2009 Opt. Express 17 22689
[3] Rundquist A, Majumdar A and Vuckovic J 2011 Appl. Phys. Lett. 99 251907
[4] Sergent S, Arita M, Kako S, Iwamoto S and Arakawa Y 2012 Appl. Phys. Lett. 100 121103
[5] Ahn B H, Kang J H, Kim M K, Song J H, Min B, Kim K S and Lee Y H 2010 Opt. Express 18 5654
[6] Lu T W, Tsai W C, Wu T Y and Lee P T 2013 Appl. Phys. Lett. 102 51103
[7] Halioua Y, Bazin A, Monnier P, Karle T J, Roelkens G, Sagnes I, Raj R and Raineri F 2011 Opt. Express 19 9221
[8] Kim S, Ahn B H, Kim J Y, Jeong K Y, Kim K S and Lee Y H 2011 Opt. Express 19 24055
[9] Akahane Y, Asano T, Song B S and Noda S 2003 Nature 425 944
[10] Nomura M, Tanabe K, Iwamoto S and Arakawa Y 2010 Opt. Express 18 8144
[11] Terawaki R, Takahashi Y, Chihara M, Inui Y and Noda S 2012 Opt. Express 20 22743
[12] Liu H, Liu D, Zhao H and Gao Y H 2013 Acta Phys. Sin. 62 194208 (in Chinese)
[13] Zhang C X and Xu X S 2012 Chin. Phys. B 21 44213
[14] Quan Q M and Loncar M 2011 Opt. Express 19 18529
[15] Notomi M, Kuramochi E and Taniyama H 2008 Opt. Express 16 11095
[16] Zhang Y N, McCutcheon M W, Burgess I B and Loncar M 2009 Opt. Lett. 34 2694
[17] Deotare P B, McCutcheon M W, Frank I W, Khan M and Loncar M 2009 Appl. Phys. Lett. 94 121106
[18] Deotare P B, McCutcheon M W, Frank I W, Khan M and Loncar M 2009 Appl. Phys. Lett. 95 31102
[19] Frank I W, Deotare P B, McCutcheon M W and Loncar M 2010 Opt. Express 18 8705
[20] Kuramochi E, Taniyama H, Tanabe T, Kawasaki K, Roh Y G and Notomi M 2010 Opt. Express 18 15859
[21] Ryckman J D and Weiss S M 2012 Appl. Phys. Lett. 101 71104
[22] McCutcheon M W and Loncar M 2008 Opt. Express 16 19136
[23] Pernice W H P, Xiong C, Schuck C and Tang H X 2012 Appl. Phys. Lett. 100 91105
[24] Gong Y and Vuckovic J 2010 Appl. Phys. Lett. 96 31107
[25] Rivoire K, Buckley S and Vuckovic J 2011 Opt. Express 19 22198
[26] Quan Q M, Deotare P B and Loncar M 2010 Appl. Phys. Lett. 96 203102
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[4] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[5] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[6] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[7] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[8] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[9] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[10] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[11] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[12] Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
Wen-Zhe Liu(刘文哲), Lei Shi(石磊), Che-Ting Chan(陈子亭), and Jian Zi(资剑). Chin. Phys. B, 2022, 31(10): 104211.
[13] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[14] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[15] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
No Suggested Reading articles found!