|
|
Confined subdiffusion in three dimensions |
Qin Shan-Lin (覃善林), He Yong (何勇) |
Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Institute of Super Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha 410012, China |
|
|
Abstract Three-dimensional (3D) Fick's diffusion equation and fractional diffusion equation are solved for different reflecting boundaries. We use the continuous time random walk model (CTRW) to investigate the time-averaged mean square displacement (MSD) of a 3D single particle trajectory. Theoretical results show that the ensemble average of the time-averaged MSD can be expressed analytically by a Mittag-Leffler function. Our new expression is in agreement with previous formulas in two limiting cases: <δ2> ~Δ in short lag time and <δ2>~Δ1-α in long lag time. We also simulate the experimental data of mRNA diffusion in living E. coli using a 3D CTRW model under confined and crowded conditions. The simulation results are well consistent with experimental results. The calculations of power spectral density (PSD) further indicate the subdiffsive behavior of an individual trajectory.
|
Received: 19 March 2014
Revised: 20 May 2014
Accepted manuscript online:
|
PACS:
|
02.50.-r
|
(Probability theory, stochastic processes, and statistics)
|
|
05.10.Gg
|
(Stochastic analysis methods)
|
|
05.20.Dd
|
(Kinetic theory)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21153002) and the Fundamental Research Funds for the Central Universities of China (Grant No. 2013zzts151). |
Corresponding Authors:
He Yong
E-mail: liuxizhong123@163.com
|
Cite this article:
Qin Shan-Lin (覃善林), He Yong (何勇) Confined subdiffusion in three dimensions 2014 Chin. Phys. B 23 110206
|
[1] |
Dupont A, Gorelashvili M, Schüller V, Wehnekamp F, Arcizet D, Katayama Y, Lamb D C and Heinrich D 2013 New J. Phys. 15 075008
|
[2] |
Juette M F, Rivera-Molina F E, Toomre D K and Bewersdorf J 2013 Appl. Phys. Lett. 102 173702
|
[3] |
Liu S L, Li J C, Zhang Z L, Wang Z G, Tian Z Q, Wang G P and Pang D W 2013 Scientfic Reports 3 2462
|
[4] |
Dupont A and Lamb D C 2011 Nanoscale 3 4532
|
[5] |
Ruthardt N, Lamb D C and Bräuchle C 2011 Mol. Ther. 19 1199
|
[6] |
Thompsona M A, Casolarib J M, Badieirostamia M, Brownb P O and Moernera W E 2010 Proc. Natl. Acad. Sci. 107 17864
|
[7] |
Wang X L, Zhang X H, Wei K J, Sun B and Li M 2007 Acta Phys. Sin. 57 3905 (in Chinese)
|
[8] |
Wells N P, Lessard G A, Goodwin P M, Phipps M E, Cutler P J, Lidke D S, Wilson B S and Werner J H 2010 Nano Lett. 10 4732
|
[9] |
Sun Y, McKenna J D, Murray J M, Ostap E M and Goldman Y E 2010 Nano Lett. 10 4732
|
[10] |
Bräuchle C, Lamb D C and Michaelis J 2010 Single Particle Tracking and Single Molecule Energy Transfer (Weinheim: Wiley-VCH)
|
[11] |
Phillips R, Kondev J and Theriot J 2009 Physical Biology of the Cell (Garland Science, Taylor and Francis Group LLC )
|
[12] |
Höfling F and Franosch T 2013 Rep. Prog. Phys. 76 046602
|
[13] |
Sokolov I M 2012 Soft Matter 8 9043
|
[14] |
Barkai E, Garini Y and Metzler R 2012 Phys. Today 65 29
|
[15] |
Burov S, Jeon J, Metzler R and Barkai E 2011 Phys. Chem. Chem. Phys. 13 1800
|
[16] |
Hellmann M, Klafter J, Heermann D W and Weiss M 2011 J. Phys.: Condens. Matter 23 234113
|
[17] |
Mandelbrot B B and Ness J W V 1968 SIAM Rev. 10 422
|
[18] |
Kou S C and Xie X S 2004 Phys. Rev. Lett. 93 180603
|
[19] |
Goychuk I 2007 Phys. Rev. E 76 040102
|
[20] |
Goychuk I 2009 Phys. Rev. E 80 046125
|
[21] |
Langevin P 1908 C. R. Hebd. Seances. Acad. Sci. 146 530
|
[22] |
Yang H J, Zhuo Y Z and Wu X Z 1994 Acta Phys. Sin. 3 539 (in Chinese)
|
[23] |
Jeon J H and Metzler R 2010 Phys. Rev. E 81 021103
|
[24] |
Min W, Luo G, Cherayil B J, Kou S C and Xie X S 2005 Phys. Rev. Lett. 94 198302
|
[25] |
Montroll E W and Weiss G H 1965 J. Math. Phys. 6 167
|
[26] |
Metzler R and Klafter J 2000 Phys. Rep. 339 1
|
[27] |
Bouchaud J P and Georges A 1990 Phys. Rep. 195 127
|
[28] |
Klafter J and Sokolov I M 2011 First Step in Random Walks (Oxford: Oxford University Press)
|
[29] |
Lin F and Bao J D 2011 Chin. Phys. B 20 040502
|
[30] |
Liu J and Bao J D 2013 Chin. Phys. Lett. 30 020202
|
[31] |
Lorentz H A 1905 Arch. Neerl. Sci. Exact Natur. 10 336
|
[32] |
Havlin S and Ben-Avraham D 1987 Adv. Phys. 36 695
|
[33] |
Saxton M J 1994 Biophys. J. 66 394
|
[34] |
Franosch T, Höfling F, Bauer T and Frey E 2010 Chem. Phys. 375 540
|
[35] |
Regner B M, Bučinić D, Domnisoru C, Bartol T M, Hetzer M W, Tartakovsky D M and Sejnowski T J 2013 Biophys. J. 104 1652
|
[36] |
Elcock A H 2010 Curr. Opin. Struct. Biol. 20 196
|
[37] |
He Y, Burov S, Metzler R and Barkai E 2008 Phys. Rev. Lett. 101 058101
|
[38] |
Metziler R, Tejedor V, Jeon J H, He Y, Deng W H, Burov S and Barkai E 2009 Acta Phys. Polon. B 40 1315
|
[39] |
Golding I and Cox E C 2006 Phys. Rev. Lett. 96 098102
|
[40] |
Sokolov I M 2008 Physics 1 8
|
[41] |
Neusius T, Sokolov I M and Smith J C 2009 Phys. Rev. E 80 011109
|
[42] |
Jeon J H and Metzler R 2012 Phys. Rev. E 85 021147
|
[43] |
Froemberg D and Barkai E 2013 Phys. Rev. E 87 030104
|
[44] |
Burov S, Metzler R and Barkai 2010 Proc. Natl. Acad. Sci. 107 13228
|
[45] |
Jeon J H, Tejedor V, Burov S, Barkai E, Christine S U, Kirstine B S, Lene O and Metzler R 2011 Phys. Rev. Lett. 106 048103
|
[46] |
Schulz J H P, Barkai E and Metzler R 2013 Phys. Rev. Lett. 110 020602
|
[47] |
Miyaguchi T and Akimoto T 2013 Phys. Rev. E 87 032130
|
[48] |
Chang F X, Chen J and Huang W 2004 Acta Phys. Sin. 54 1113 (in Chinese)
|
[49] |
Oldham K B and Spanier J 1974 The Fractional Calculus (New York: Academic Press)
|
[50] |
Metzler R and Klafter J 2000 Physica A 278 107
|
[51] |
Sokolov I M, Blumen A and Klafter J 2001 Europhys. Lett. 175 56
|
[52] |
Podlubny I 1999 Fractional Differential Equation (California: Academic Press)
|
[53] |
Jeon J H, Tejedor V and Burov S 2011 Phys. Rev. Lett. 106 048103
|
[54] |
Haubold H J, Mathai A M and Saxena R K 2011 J. Appl. Math. 2011 51
|
[55] |
Burov S, Jeon J H, Metzler R and Barkai E 2011 Phys. Chem. Chem. Phys. 13 1800
|
[56] |
Weigela A V, Tamkunb M M and Krapfa D 2013 Proc. Natl. Acad. Sci. 110 E4591
|
[57] |
Burova S, Ali Tabeia S M, Huynhb T, Murrellc M P, Philipsond L H, Ricea S A, Gardela M L, Scherera N F and Dinnera A R 2013 Proc. Natl. Acad. Sci. 110 19689
|
[58] |
Ali Tabeia S M, Burova S, Kima H Y, Kuznetsovd A, Huynha T, Jurellerc J, Philipsond L H, Dinnera A R and Scherera N F 2013 Proc. Natl. Acad. Sci. 110 4911
|
[59] |
Mantegna R N, Stanley H E and Ebrary 2000 An Introduction to Econophysics Correlations and Complexity in Finance (Cambridge: Cambridge University Press)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|