Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 040503    DOI: 10.1088/1674-1056/ab75ca
GENERAL Prev   Next  

Novel Woods-Saxon stochastic resonance system for weak signal detection

Yong-Hui Zhou(周永辉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉)
School of Physics and Electronics, Central South University, Changsha 410083, China
Abstract  We propose a joint exponential function and Woods-Saxon stochastic resonance (EWSSR) model. Because change of a single parameter in the classical stochastic resonance model may cause a great change in the shape of the potential function, it is difficult to obtain the optimal output signal-to-noise ratio by adjusting one parameter. In the novel system, the influence of different parameters on the shape of the potential function has its own emphasis, making it easier for us to adjust the shape of the potential function. The system can obtain different widths of the potential well or barrier height by adjusting one of these parameters, so that the system can match different types of input signals adaptively. By adjusting the system parameters, the potential function model can be transformed between the bistable model and the monostable model. The potential function of EWSSR has richer shapes and geometric characteristics. The effects of parameters, such as the height of the barrier and the width of the potential well, on SNR are studied, and a set of relatively optimal parameters are determined. Moreover, the EWSSR model is compared with other classical stochastic resonance models. Numerical experiments show that the proposed EWSSR model has higher SNR and better noise immunity than other classical stochastic resonance models. Simultaneously, the EWSSR model is applied to the detection of actual bearing fault signals, and the detection effect is also superior to other models.
Keywords:  stochastic resonance      weak signal detection      a joint exponential function and Woods-Saxon stochastic resonance      signal-to-noise ratio  
Received:  18 July 2019      Revised:  31 December 2019      Accepted manuscript online: 
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
  05.45.-a (Nonlinear dynamics and chaos)  
  43.60.Hj (Time-frequency signal processing, wavelets)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61501525) and the National Natural Science Foundation of Hunan Province of China (Grant No. 2018JJ3680).
Corresponding Authors:  Xue-Mei Xu     E-mail:  xuxuemei999@126.com

Cite this article: 

Yong-Hui Zhou(周永辉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉) Novel Woods-Saxon stochastic resonance system for weak signal detection 2020 Chin. Phys. B 29 040503

[1] Peng H H, Xu X MYang B C and Yin L Z 2016 J. Phys. Soc. Jpn. 85 044005
[2] Luo J J, Xu X M, Ding Y P, Yang B C, Sun K H and Yin L Z 2018 Eur. Phys. J. Plus 133 239
[3] Li C J, Xu X M, Ding Y P and Yin L Z 2018 Int. J. Mod. Phys. B 32 1850103
[4] Li M P, Xu X M, Yang B Cand Ding J F 2015 Chin. Phys. B 24 060504
[5] Feng J L, Dong J M and Tang X L 2016 Chin. Phys. Lett. 33 108701
[6] Kong L W, Zheng W R and Fang H P 2016 Chin. Phys. Lett. 33 020501
[7] Zhang J Q, Huang S F, Pang S T, Wang M S and Gao S 2015 Chin. Phys. Lett. 32 120502
[8] Liu Y L, Yu X M and Hao Y H 2015 Chin. Phys. Lett. 32 110503
[9] Song X T, Li H W, Yin Z Q, Liang W Y and Zhang C M 2015 Chin. Phys. Lett. 32 080302
[10] Benzi R, Sutera A and Vulpiani A 1981 J. Phys. A: Math. Gen. 14 L453
[11] Chapeau-Blondeau F 1997 Phys. Rev. E 55 2016
[12] Mcnamara B, Wiesenfeld K and Roy R 1988 Phys. Rev. Lett. 60 2626
[13] Gingl Z, Vajtai R and Kiss L B 2000 Chaos Solitons Fractals. 11 1929
[14] Gammaitoni L, Hänggi P and Jung P 1998 Rev. Mod. Phys. 70 223
[15] Wiesenfeld K and Moss F 1995 Nature 373 33
[16] Wu J J, Leng Y G and Qiao H S 2018 Acta Phys. Sin. 67 210502 (in Chinese)
[17] Asdi A S and Tewfik A H 1995 Acoustics, Speech, and Signal Processing, May 9-12, 1995, Detroit, MI, USA, p. 1332
[18] Galdi V, Pierro V and Pinto I M 1998 Phys. Rev. E 57 6470
[19] Lutz E 2001 Phys. Rev. E 64 051106
[20] Leng Y G, Leng Y S, Wang T Y and Guo Y 2006 J. Sound & Vib. 292 788
[21] Jin Y F 2018 Chin. Phys. B 27 050501
[22] Wang S and Wang F Z 2018 Acta Phys. Sin. 16 160502 (in Chinese)
[23] Xu W, Wang L, Feng J Q, Qiao Y and Han P 2018 Chin. Phys. B 27 110503
[24] Zhang X H and Liu S Q 2018 Chin. Phys. B 4 040501
[25] He Q B and Wang J 2012 Digital Signal Process. 22 614
[26] Liu J, Li G, Liu S L and Chen Y Q 2004 Space Med. & Med. Eng. 17 360
[27] Li Q Q, Xu X M, Yin Y Z, Ding Y P, Ding J F and Sun K H 2018 Chin. Phys. B 27 034203
[28] Wu X J, Guo W M, Cai W S, Shao X G and Pan Z X 2004 Talanta 61 863
[29] Shi P M, Ding X J and Han D Y 2014 Measurement 47 540
[30] Lu S L, He Q B and Kong F R 2014 Mech. Syst. & Signal Process. 45 488
[31] Lu S L, He Q B and Kong F R 2015 Engineering Asset Management-Systems, Professional Practices and Certification (Berlin: Springer) pp. 99-108
[32] Zhang G, Shi J B and Zhang T Q 2018 J. Electron. Meas. & Instrum. 32 142
[1] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[2] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[3] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[4] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
[5] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[6] Research and application of stochastic resonance in quad-stable potential system
Li-Fang He(贺利芳), Qiu-Ling Liu(刘秋玲), and Tian-Qi Zhang(张天骐). Chin. Phys. B, 2022, 31(7): 070503.
[7] Signal-to-noise ratio of Raman signal measured by multichannel detectors
Xue-Lu Liu(刘雪璐), Yu-Chen Leng(冷宇辰), Miao-Ling Lin(林妙玲), Xin Cong(从鑫), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2021, 30(9): 097807.
[8] A sign-function receiving scheme for sine signals enhanced by stochastic resonance
Zhao-Rui Li(李召瑞), Bo-Hang Chen(陈博航), Hui-Xian Sun(孙慧贤), Guang-Kai Liu(刘广凯), and Shi-Lei Zhu(朱世磊). Chin. Phys. B, 2021, 30(8): 080502.
[9] Collective stochastic resonance behaviors of two coupled harmonic oscillators driven by dichotomous fluctuating frequency
Lei Jiang(姜磊), Li Lai(赖莉), Tao Yu(蔚涛), Maokang Luo(罗懋康). Chin. Phys. B, 2021, 30(6): 060502.
[10] Time-varying coupling-induced logical stochastic resonance in a periodically driven coupled bistable system
Yuangen Yao(姚元根). Chin. Phys. B, 2021, 30(6): 060503.
[11] Blind parameter estimation of pseudo-random binary code-linear frequency modulation signal based on Duffing oscillator at low SNR
Ke Wang(王珂), Xiaopeng Yan(闫晓鹏), Ze Li(李泽), Xinhong Hao(郝新红), and Honghai Yu(于洪海). Chin. Phys. B, 2021, 30(5): 050708.
[12] Asymmetric stochastic resonance under non-Gaussian colored noise and time-delayed feedback
Ting-Ting Shi(石婷婷), Xue-Mei Xu(许雪梅), Ke-Hui Sun(孙克辉), Yi-Peng Ding(丁一鹏), Guo-Wei Huang(黄国伟). Chin. Phys. B, 2020, 29(5): 050501.
[13] Noise properties of multi-combination information in x-ray grating-based phase-contrast imaging
Wali Faiz, Ji Li(李冀), Kun Gao(高昆), Zhao Wu(吴朝), Yao-Hu Lei(雷耀虎), Jian-Heng Huang(黄建衡), Pei-Ping Zhu(朱佩平). Chin. Phys. B, 2020, 29(1): 014301.
[14] Stochastic resonance in an under-damped bistable system driven by harmonic mixing signal
Yan-Fei Jin(靳艳飞). Chin. Phys. B, 2018, 27(5): 050501.
[15] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
No Suggested Reading articles found!