|
|
Stochastic resonance in an under-damped bistable system driven by harmonic mixing signal |
Yan-Fei Jin(靳艳飞) |
Department of Mechanics, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract Stochastic resonance (SR) is studied in an under-damped bistable system driven by the harmonic mixing signal and Gaussian white noise. Using the linear response theory (LRT), the expressions of the spectral amplification at fundamental and higher-order harmonic are obtained. The effects of damping coefficient, noise intensity, signal amplitude, and frequency on spectral amplifications are explored. Meanwhile, the power spectral density (PSD) and signal-to-noise ratio (SNR) are calculated to quantify SR and verify the theoretical results. The SNRs at the first and second harmonics exhibit a minimum first and a maximum later with increasing noise intensity. That is, both of the noise-induced suppression and resonance can be observed by choosing proper system parameters. Especially, when the ratio of the second harmonic amplitude to the fundamental one takes a large value, the SNR at the fundamental harmonic is a monotonic function of noise intensity and the SR phenomenon disappears.
|
Received: 05 January 2018
Revised: 09 February 2018
Accepted manuscript online:
|
PACS:
|
05.40.-a
|
(Fluctuation phenomena, random processes, noise, and Brownian motion)
|
|
02.50.-r
|
(Probability theory, stochastic processes, and statistics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No.11772048). |
Corresponding Authors:
Yan-Fei Jin
E-mail: jinyf@bit.edu.cn
|
Cite this article:
Yan-Fei Jin(靳艳飞) Stochastic resonance in an under-damped bistable system driven by harmonic mixing signal 2018 Chin. Phys. B 27 050501
|
[13] |
Yang J H and Liu X B 2010 Chaos 20 033124
|
[1] |
Gammaitoni L, Hänggi P, Jung P and Marchesoni F 1998 Rev. Mod. Phys. 70 223
|
[14] |
Yang J H, Sanjuán M A F and Liu H G 2016 Commun. Nonlinear Sci. Numer. Simulat. 30 362
|
[2] |
McNamara B and Wiesenfeld K 1989 Phys Rev A 39 4854
|
[15] |
Gammaitoni L, Löcher M, Bulsara A, Hänggi P, Neff J, Wisesnfeld K, Ditto W and Inchiosa M E 1999 Phys. Rev. Lett. 82 4574
|
[3] |
Hu G, Nicolis G and Nicolis C 1990 Phys. Rev. A 42 2030
|
[16] |
Löcher M, Inchiosa M E, Neff J, Bulsara A, Wiesenfeld K, Gammaitoni L, Hänggi P and Ditto W 2000 Phys. Rev. E 62 317
|
[4] |
Xu Y, Wu J, Du L and Yang H 2016 Chaos Solit. Fract. 92 91
|
[17] |
Schmid G and Hänggi P 2005 Physica A 351 95
|
[5] |
Jin Y F, Ma Z M and Xiao S M 2017 Chaos Solit. Fract. 103 470
|
[18] |
Grigorenko A N, Nikitin P I and Roschepkin G V 1996 J. Appl. Phys. 79 6113
|
[6] |
Xu P F, Jin Y F and Xiao S M 2017 Chaos 27 113109
|
[19] |
Jin Y F, Xu W and Xu M 2005 Chin. Phys. Lett. 22 1061
|
[7] |
Ai B Q and Liu L G 2007 J. Stat. Mech. 2007 P02019
|
[20] |
Machura L, Kostur M and Luczka J 2010 Chem. Phys. 375 445
|
[8] |
Landa P S and Mcclintock P V E 2000 J. Phys. A 33 L433
|
[21] |
Du L C and Mei D C 2011 Physica A 390 3262
|
[9] |
Gitterman M 2001 J. Phys. A 34 L355
|
[22] |
Wu J and Xu Y 2014 Discrete Dyn. Nat. Soc. 2014 850361
|
[10] |
Jung P and Talkner P 1995 Phys. Rev. E 51 2640
|
[23] |
Saikia S 2014 Physica A 416 411
|
[11] |
Chizhevsky V N 2015 Phys. Rev. E 92 032902
|
[24] |
Hennig D, Schimansky-Geier L and Hänggi P 2009 Phys. Rev. E 79 041117
|
[12] |
Chizhevsky V N 2014 Phys. Rev. E 90 042924
|
[25] |
Lindner B, Schimansky-Geier L, Reimann P, Hänggi P and Nagaoka M 1999 Phys. Rev. E 59 1417
|
[13] |
Yang J H and Liu X B 2010 Chaos 20 033124
|
[26] |
Kang Y M, Xu J X and Xie Y 2003 Acta Phys. Sin. 52 802(in Chinese)
|
[14] |
Yang J H, Sanjuán M A F and Liu H G 2016 Commun. Nonlinear Sci. Numer. Simulat. 30 362
|
[27] |
Kang Y M, Xu J X and Xie Y 2003 Phys. Rev. E 68 036123
|
[15] |
Gammaitoni L, Löcher M, Bulsara A, Hänggi P, Neff J, Wisesnfeld K, Ditto W and Inchiosa M E 1999 Phys. Rev. Lett. 82 4574
|
[28] |
Xiao S M and Jin Y F 2017 Nonlinear Dyn. 90 2069
|
[16] |
Löcher M, Inchiosa M E, Neff J, Bulsara A, Wiesenfeld K, Gammaitoni L, Hänggi P and Ditto W 2000 Phys. Rev. E 62 317
|
[29] |
Liu K H and Jin Y F 2013 Physica A 392 5283
|
[17] |
Schmid G and Hänggi P 2005 Physica A 351 95
|
[30] |
Jin Y F, Xie W X and Liu K H 2017 Procedia IUTAM 22 267
|
[18] |
Grigorenko A N, Nikitin P I and Roschepkin G V 1996 J. Appl. Phys. 79 6113
|
[31] |
Xu Y, Wu J, Zhang H Q and Ma S J 2012 Nonlinear Dyn. 70 531
|
[19] |
Jin Y F, Xu W and Xu M 2005 Chin. Phys. Lett. 22 1061
|
[20] |
Machura L, Kostur M and Luczka J 2010 Chem. Phys. 375 445
|
[21] |
Du L C and Mei D C 2011 Physica A 390 3262
|
[22] |
Wu J and Xu Y 2014 Discrete Dyn. Nat. Soc. 2014 850361
|
[23] |
Saikia S 2014 Physica A 416 411
|
[24] |
Hennig D, Schimansky-Geier L and Hänggi P 2009 Phys. Rev. E 79 041117
|
[25] |
Lindner B, Schimansky-Geier L, Reimann P, Hänggi P and Nagaoka M 1999 Phys. Rev. E 59 1417
|
[26] |
Kang Y M, Xu J X and Xie Y 2003 Acta Phys. Sin. 52 802(in Chinese)
|
[27] |
Kang Y M, Xu J X and Xie Y 2003 Phys. Rev. E 68 036123
|
[28] |
Xiao S M and Jin Y F 2017 Nonlinear Dyn. 90 2069
|
[29] |
Liu K H and Jin Y F 2013 Physica A 392 5283
|
[30] |
Jin Y F, Xie W X and Liu K H 2017 Procedia IUTAM 22 267
|
[31] |
Xu Y, Wu J, Zhang H Q and Ma S J 2012 Nonlinear Dyn. 70 531
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|