Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 050501    DOI: 10.1088/1674-1056/27/5/050501
GENERAL Prev   Next  

Stochastic resonance in an under-damped bistable system driven by harmonic mixing signal

Yan-Fei Jin(靳艳飞)
Department of Mechanics, Beijing Institute of Technology, Beijing 100081, China
Abstract  Stochastic resonance (SR) is studied in an under-damped bistable system driven by the harmonic mixing signal and Gaussian white noise. Using the linear response theory (LRT), the expressions of the spectral amplification at fundamental and higher-order harmonic are obtained. The effects of damping coefficient, noise intensity, signal amplitude, and frequency on spectral amplifications are explored. Meanwhile, the power spectral density (PSD) and signal-to-noise ratio (SNR) are calculated to quantify SR and verify the theoretical results. The SNRs at the first and second harmonics exhibit a minimum first and a maximum later with increasing noise intensity. That is, both of the noise-induced suppression and resonance can be observed by choosing proper system parameters. Especially, when the ratio of the second harmonic amplitude to the fundamental one takes a large value, the SNR at the fundamental harmonic is a monotonic function of noise intensity and the SR phenomenon disappears.
Keywords:  stochastic resonance      under-damped bistable system      spectral amplification      harmonic mixing signal  
Received:  05 January 2018      Revised:  09 February 2018      Accepted manuscript online: 
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.11772048).
Corresponding Authors:  Yan-Fei Jin     E-mail:  jinyf@bit.edu.cn

Cite this article: 

Yan-Fei Jin(靳艳飞) Stochastic resonance in an under-damped bistable system driven by harmonic mixing signal 2018 Chin. Phys. B 27 050501

[13] Yang J H and Liu X B 2010 Chaos 20 033124
[1] Gammaitoni L, Hänggi P, Jung P and Marchesoni F 1998 Rev. Mod. Phys. 70 223
[14] Yang J H, Sanjuán M A F and Liu H G 2016 Commun. Nonlinear Sci. Numer. Simulat. 30 362
[2] McNamara B and Wiesenfeld K 1989 Phys Rev A 39 4854
[15] Gammaitoni L, Löcher M, Bulsara A, Hänggi P, Neff J, Wisesnfeld K, Ditto W and Inchiosa M E 1999 Phys. Rev. Lett. 82 4574
[3] Hu G, Nicolis G and Nicolis C 1990 Phys. Rev. A 42 2030
[16] Löcher M, Inchiosa M E, Neff J, Bulsara A, Wiesenfeld K, Gammaitoni L, Hänggi P and Ditto W 2000 Phys. Rev. E 62 317
[4] Xu Y, Wu J, Du L and Yang H 2016 Chaos Solit. Fract. 92 91
[17] Schmid G and Hänggi P 2005 Physica A 351 95
[5] Jin Y F, Ma Z M and Xiao S M 2017 Chaos Solit. Fract. 103 470
[18] Grigorenko A N, Nikitin P I and Roschepkin G V 1996 J. Appl. Phys. 79 6113
[6] Xu P F, Jin Y F and Xiao S M 2017 Chaos 27 113109
[19] Jin Y F, Xu W and Xu M 2005 Chin. Phys. Lett. 22 1061
[7] Ai B Q and Liu L G 2007 J. Stat. Mech. 2007 P02019
[20] Machura L, Kostur M and Luczka J 2010 Chem. Phys. 375 445
[8] Landa P S and Mcclintock P V E 2000 J. Phys. A 33 L433
[21] Du L C and Mei D C 2011 Physica A 390 3262
[9] Gitterman M 2001 J. Phys. A 34 L355
[22] Wu J and Xu Y 2014 Discrete Dyn. Nat. Soc. 2014 850361
[10] Jung P and Talkner P 1995 Phys. Rev. E 51 2640
[23] Saikia S 2014 Physica A 416 411
[11] Chizhevsky V N 2015 Phys. Rev. E 92 032902
[24] Hennig D, Schimansky-Geier L and Hänggi P 2009 Phys. Rev. E 79 041117
[12] Chizhevsky V N 2014 Phys. Rev. E 90 042924
[25] Lindner B, Schimansky-Geier L, Reimann P, Hänggi P and Nagaoka M 1999 Phys. Rev. E 59 1417
[13] Yang J H and Liu X B 2010 Chaos 20 033124
[26] Kang Y M, Xu J X and Xie Y 2003 Acta Phys. Sin. 52 802(in Chinese)
[14] Yang J H, Sanjuán M A F and Liu H G 2016 Commun. Nonlinear Sci. Numer. Simulat. 30 362
[27] Kang Y M, Xu J X and Xie Y 2003 Phys. Rev. E 68 036123
[15] Gammaitoni L, Löcher M, Bulsara A, Hänggi P, Neff J, Wisesnfeld K, Ditto W and Inchiosa M E 1999 Phys. Rev. Lett. 82 4574
[28] Xiao S M and Jin Y F 2017 Nonlinear Dyn. 90 2069
[16] Löcher M, Inchiosa M E, Neff J, Bulsara A, Wiesenfeld K, Gammaitoni L, Hänggi P and Ditto W 2000 Phys. Rev. E 62 317
[29] Liu K H and Jin Y F 2013 Physica A 392 5283
[17] Schmid G and Hänggi P 2005 Physica A 351 95
[30] Jin Y F, Xie W X and Liu K H 2017 Procedia IUTAM 22 267
[18] Grigorenko A N, Nikitin P I and Roschepkin G V 1996 J. Appl. Phys. 79 6113
[31] Xu Y, Wu J, Zhang H Q and Ma S J 2012 Nonlinear Dyn. 70 531
[19] Jin Y F, Xu W and Xu M 2005 Chin. Phys. Lett. 22 1061
[20] Machura L, Kostur M and Luczka J 2010 Chem. Phys. 375 445
[21] Du L C and Mei D C 2011 Physica A 390 3262
[22] Wu J and Xu Y 2014 Discrete Dyn. Nat. Soc. 2014 850361
[23] Saikia S 2014 Physica A 416 411
[24] Hennig D, Schimansky-Geier L and Hänggi P 2009 Phys. Rev. E 79 041117
[25] Lindner B, Schimansky-Geier L, Reimann P, Hänggi P and Nagaoka M 1999 Phys. Rev. E 59 1417
[26] Kang Y M, Xu J X and Xie Y 2003 Acta Phys. Sin. 52 802(in Chinese)
[27] Kang Y M, Xu J X and Xie Y 2003 Phys. Rev. E 68 036123
[28] Xiao S M and Jin Y F 2017 Nonlinear Dyn. 90 2069
[29] Liu K H and Jin Y F 2013 Physica A 392 5283
[30] Jin Y F, Xie W X and Liu K H 2017 Procedia IUTAM 22 267
[31] Xu Y, Wu J, Zhang H Q and Ma S J 2012 Nonlinear Dyn. 70 531
[1] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[2] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[3] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[4] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
[5] A sign-function receiving scheme for sine signals enhanced by stochastic resonance
Zhao-Rui Li(李召瑞), Bo-Hang Chen(陈博航), Hui-Xian Sun(孙慧贤), Guang-Kai Liu(刘广凯), and Shi-Lei Zhu(朱世磊). Chin. Phys. B, 2021, 30(8): 080502.
[6] Collective stochastic resonance behaviors of two coupled harmonic oscillators driven by dichotomous fluctuating frequency
Lei Jiang(姜磊), Li Lai(赖莉), Tao Yu(蔚涛), Maokang Luo(罗懋康). Chin. Phys. B, 2021, 30(6): 060502.
[7] Time-varying coupling-induced logical stochastic resonance in a periodically driven coupled bistable system
Yuangen Yao(姚元根). Chin. Phys. B, 2021, 30(6): 060503.
[8] Asymmetric stochastic resonance under non-Gaussian colored noise and time-delayed feedback
Ting-Ting Shi(石婷婷), Xue-Mei Xu(许雪梅), Ke-Hui Sun(孙克辉), Yi-Peng Ding(丁一鹏), Guo-Wei Huang(黄国伟). Chin. Phys. B, 2020, 29(5): 050501.
[9] Novel Woods-Saxon stochastic resonance system for weak signal detection
Yong-Hui Zhou(周永辉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2020, 29(4): 040503.
[10] Stochastic resonance and synchronization behaviors of excitatory-inhibitory small-world network subjected to electromagnetic induction
Xiao-Han Zhang(张晓函), Shen-Quan Liu(刘深泉). Chin. Phys. B, 2018, 27(4): 040501.
[11] Implication of two-coupled tri-stable stochastic resonance in weak signal detection
Quan-Quan Li(李泉泉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2018, 27(3): 034203.
[12] Analysis of weak signal detection based on tri-stable system under Levy noise
Li-Fang He(贺利芳), Ying-Ying Cui(崔莹莹), Tian-Qi Zhang(张天骐), Gang Zhang(张刚), Ying Song(宋莹). Chin. Phys. B, 2016, 25(6): 060501.
[13] Parameter allocation of parallel array bistable stochastic resonance and its application in communication systems
Jian Liu(刘健), You-Guo Wang(王友国), Qi-Qing Zhai(翟其清), Jin Liu(刘进). Chin. Phys. B, 2016, 25(10): 100501.
[14] Resonant behavior of stochastic oscillations of general relativistic disks driven by a memory-damped friction
Wang Zhi-Yun (汪志云), Chen Pei-Jie (陈培杰), Zhang Liang-Ying (张良英). Chin. Phys. B, 2015, 24(5): 059801.
[15] Achieving high bit rate logical stochastic resonance in a bistable system by adjusting parameters
Yang Ding-Xin (杨定新), Gu Feng-Shou (谷丰收), Feng Guo-Jin (冯国金), Yang Yong-Min (杨拥民), Andrew Ball. Chin. Phys. B, 2015, 24(11): 110502.
No Suggested Reading articles found!