Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 050501    DOI: 10.1088/1674-1056/ab7e9f
GENERAL Prev   Next  

Asymmetric stochastic resonance under non-Gaussian colored noise and time-delayed feedback

Ting-Ting Shi(石婷婷), Xue-Mei Xu(许雪梅), Ke-Hui Sun(孙克辉), Yi-Peng Ding(丁一鹏), Guo-Wei Huang(黄国伟)
School of Physics and Electronics, Central South University, Changsha 410083, China
Abstract  Based on adiabatic approximation theory, in this paper we study the asymmetric stochastic resonance system with time-delayed feedback driven by non-Gaussian colored noise. The analytical expressions of the mean first-passage time (MFPT) and output signal-to-noise ratio (SNR) are derived by using a path integral approach, unified colored-noise approximation (UCNA), and small delay approximation. The effects of time-delayed feedback and non-Gaussian colored noise on the output SNR are analyzed. Moreover, three types of asymmetric potential function characteristics are thoroughly discussed. And they are well-depth asymmetry (DASR), well-width asymmetry (WASR), and synchronous action of well-depth and well-width asymmetry (DWASR), respectively. The conclusion of this paper is that the time-delayed feedback can suppress SR, however, the non-Gaussian noise deviation parameter has the opposite effect. Moreover, the correlation time plays a significant role in improving SNR, and the SNR of asymmetric stochastic resonance is higher than that of symmetric stochastic resonance. Our experiments demonstrate that the appropriate parameters can make the asymmetric stochastic resonance perform better to detect weak signals than the symmetric stochastic resonance, in which no matter whether these signals have low frequency or high frequency, accompanied by strong or weak noise.
Keywords:  asymmetric stochastic resonance      time-delayed feedback      non-Gaussian colored noise      weak signal detection  
Received:  19 February 2020      Revised:  04 March 2020      Accepted manuscript online: 
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60551002) and the Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ3680).
Corresponding Authors:  Xue-Mei Xu     E-mail:  xuxuemei999@126.com

Cite this article: 

Ting-Ting Shi(石婷婷), Xue-Mei Xu(许雪梅), Ke-Hui Sun(孙克辉), Yi-Peng Ding(丁一鹏), Guo-Wei Huang(黄国伟) Asymmetric stochastic resonance under non-Gaussian colored noise and time-delayed feedback 2020 Chin. Phys. B 29 050501

[1] Liu W H, Sun K H and He S B 2017 Nonlinear Dyn. 89 2521
[2] Li C J, Xu X M, Ding Y P, Yin L Z and Dou B B 2018 Int. J. Mod. Phys. B 32 1850103
[3] Wu J J, Leng Y G, Qiao H, Liu J J and Zhang Y Y 2018 Acta Phys. Sin. 67 210502 (in Chinese)
[4] Jin Y F 2018 Chin. Phys. B 27 050501
[5] Peng H H, Xu X M, Yang B C and Yin L Z 2016 J. Phys. Soc. Jpn. 85 044005
[6] Benzi R, Sutera A and Vulpiani A 1981 J. Phys. A: Math. Gen. 14 L453
[7] Strier E, Germán Drazer and Wio H S 2000 Physica A 283 255
[8] Evstigneev M, Reimann P, Pankov V and Prince R H 2004 Europhys. Lett. 65 7
[9] Agudov N V, Krichigin A V, Valenti D and Spagnolo B 2010 Phys. Rev. E 81 051123
[10] Lin L and Duan W L 2015 Physica A 427 155
[11] Li Q Q, Xu X M, Yin L Z, Ding Y P, Ding J F and Sun K H 2018 Chin. Phys. B 27 034203
[12] Li H T, Qin W Y, Lan C B, Deng W Z and Zhou Z Y 2016 Smart Mater. Struct. 25 015001
[13] Wang J and Ning L G 2018 Chin. Phys. B 27 010501
[14] Zhang X H and Liu S Q 2018 Chin. Phys. B 27 040501
[15] Wang S and Wang F Z 2018 Acta Phys. Sin. 67 160502 (in Chinese)
[16] Wio H S and Bouzat S 1999 Braz. J. Phys. 29 136
[17] Li J H 2002 Phys. Rev. E 66 031104
[18] Fuentes M A, Toral R and Wio H S 2001 Physica A 295 114
[19] Fuentes M A, Wio H S and Toral R 2002 Physica A 303 91
[20] Mei D C, Xie G Z, Cao L Y and Wu D J 1999 Phys. Rev. E 59 3880
[21] Mei D C, Xie C W and Zhang L 2003 Phys. Rev. E 68 051102
[22] Jia Y and Li J R 1998 Physica A 252 417
[23] Jin Y F and Xu W 2005 Chaos Solitons Fractals. 23 275
[24] Cao L, Wu D J and Ke S Z 1995 Phys. Rev. E 52 3228
[25] Wang C J, Yang K L and Du C Y 2017 Physica A 470 261
[26] Dybiec B and Gudowska-Nowak E 2006 Acta Phys. Pol. B 37 1479
[27] Liu J, Cao J, Wang Y G and Hu B 2019 Physica A 517 321
[28] Shi P M, Xia H F, Han D Y and Fu R R 2017 Chin. J. Phys. 55 133
[29] Feng Y L, Dong J M, Tang X L 2016 Chin. Phys. Lett. 33 108701
[30] Tang J C, Shi B Q and Li Z X 2018 Chin. J. Phys. 56 2104
[31] Liu J and Wang Y G 2018 Physica A 493 359
[32] Tan H, Liang X S, Wu Z Y, Wu Y K and Tan H C 2019 Chin. J. Phys. 57 362
[33] Luo J J, Xu X M, Ding Y P, Yang B C, Yuan Y B, Sun K H and Yin L Z 2018 Eur. Phys. J. Plus 133 239
[34] Li M P, Xu X M, Yang B C and Ding J F 2015 Chin. Phys. B 24 060504
[35] Zhao Y, Xu W, Zou S C 2009 Acta Phys. Sin. 58 1396 (in Chinese)
[36] Guillouzic S, L'Heureux I and Longtin A 1999 Phys. Rev. E 59 3970
[37] Yang T, Liu R F, Zeng C H and Duan W L 2017 Chin. J. Phys. 55 275
[38] Kennedy J and Eberhart R 1995 Proceedings of the IEEE International Conference on Neural Networks November 27-December 1, 1995, Perth, Australia, p. 1942
[1] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[2] Research and application of stochastic resonance in quad-stable potential system
Li-Fang He(贺利芳), Qiu-Ling Liu(刘秋玲), and Tian-Qi Zhang(张天骐). Chin. Phys. B, 2022, 31(7): 070503.
[3] Novel Woods-Saxon stochastic resonance system for weak signal detection
Yong-Hui Zhou(周永辉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2020, 29(4): 040503.
[4] Weak wide-band signal detection method based on small-scale periodic state of Duffing oscillator
Jian Hou(侯健), Xiao-peng Yan(闫晓鹏), Ping Li(栗苹), Xin-hong Hao(郝新红). Chin. Phys. B, 2018, 27(3): 030702.
[5] Control of the patterns by using time-delayed feedback near the codimension-three Turing–Hopf–Wave bifurcations
Wang Hui-Juan (王慧娟), Wang Yong-Jie (王永杰), Ren Zhi (任芝). Chin. Phys. B, 2013, 22(12): 120503.
[6] Application of local polynomial estimation in suppressing strong chaotic noise
Su Li-Yun(苏理云), Ma Yan-Ju(马艳菊), and Li Jiao-Jun(李姣军) . Chin. Phys. B, 2012, 21(2): 020508.
[7] Stochastic resonance in a time-delayed asymmetric bistable system with mixed periodic signal
Guo Yong-Feng(郭永峰),Xu Wei(徐伟), and Wang Liang(王亮). Chin. Phys. B, 2010, 19(4): 040503.
[8] Analysis of a kind of Duffing oscillator system used to detect weak signals
Li Yue(李月), Yang Bao-Jun(杨宝俊), Yuan Ye(袁野), and Liu Xiao-Hua(刘晓华). Chin. Phys. B, 2007, 16(4): 1072-1076.
No Suggested Reading articles found!