Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 060203    DOI: 10.1088/1674-1056/ac5616
GENERAL Prev   Next  

Most probable transition paths in eutrophicated lake ecosystem under Gaussian white noise and periodic force

Jinlian Jiang(姜金连), Wei Xu(徐伟), Ping Han(韩平), and Lizhi Niu(牛立志)
School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  The effects of stochastic perturbations and periodic excitations on the eutrophicated lake ecosystem are explored. Unlike the existing work in detecting early warning signals, this paper presents the most probable transition paths to characterize the regime shifts. The most probable transition paths are obtained by minimizing the Freidlin-Wentzell (FW) action functional and Onsager-Machlup (OM) action functional, respectively. The most probable path shows the movement trend of the lake eutrophication system under noise excitation, and describes the global transition behavior of the system. Under the excitation of Gaussian noise, the results show that the stability of the eutrophic state and the oligotrophic state has different results from two perspectives of potential well and the most probable transition paths. Under the excitation of Gaussian white noise and periodic force, we find that the transition occurs near the nearest distance between the stable periodic solution and the unstable periodic solution.
Keywords:  eutrophicated lake ecosystem      Freidlin-Wentzell action functional      Onsager-Machlup action functional      most probable transition path  
Received:  05 November 2021      Revised:  12 January 2022      Accepted manuscript online:  17 February 2022
PACS:  02.50.-r (Probability theory, stochastic processes, and statistics)  
  02.50.Fz (Stochastic analysis)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Projected supported by the National Natural Science Foundation of China (Grant Nos. 12072261 and 11872305).
Corresponding Authors:  Wei Xu     E-mail:  weixunpu@nwpu.edu.cn

Cite this article: 

Jinlian Jiang(姜金连), Wei Xu(徐伟), Ping Han(韩平), and Lizhi Niu(牛立志) Most probable transition paths in eutrophicated lake ecosystem under Gaussian white noise and periodic force 2022 Chin. Phys. B 31 060203

[1] Burkett V R, Wilcox D A, Stottlemyer R, Barrow W, Fagre D, Baron J, Price J, Nielsen J L, Allen C D, Peterson D L, Ruggerone G and Doyle T 2005 Ecolog. Complex. 2 357
[2] Scheffer M, Carpenter S, Foley J A, Folke C and Walker B 2001 Nature 413 591
[3] Zhang H, Xu W, Han P and Qiao Y 2020 Phys. A 556 124809
[4] Zhang H, Xu W, Guo Q, Han P and Qiao Y 2020 Chaos Solitons Fract. 135 109767
[5] Zhang H, Xu W, Lei Y and Qiao Y 2019 Commun. Nonlinear Sci. Numer. Simulat. 77 258
[6] Schindler D W 1977 Science 195 260
[7] Carpenter S R 2005 Proc. Natl. Acad. Sci. USA 102 10002
[8] Carpenter S R, Ludwig D and Brock W A 1999 Ecolog. Appl. 9 751
[9] Carpenter S R, Caraco N F, Correll D L, Howarth R W, Sharpley A N and Smith V H 1998 Ecolog. Appl. 8 559
[10] Scheffer M, Brock W and Westley F 2000 Ecosystems 3 451
[11] Carpenter S and Brock W 2006 Ecology Lett. 9 311
[12] Dakos V, van Nes E H and Scheffer M 2013 Theoret. Ecology 6 309
[13] Wang R, Dearing J A, Langdon P G, Zhang E, Yang X, Dakos V and Scheffer M 2012 Nature 492 419
[14] Ma J, Xu Y, Kurths J, Wang H and Xu W 2018 Chaos 28 113601
[15] Ma J, Xu Y, Li Y, Tian R and Kurths J 2019 Chaos 29 081102
[16] Ma J, Xu Y, Xu W, Li Y and Kurths J 2019 Sci. China-Techn. Sci. 62 2144
[17] Li P, Nie L R, Huang Q R and Sun X X 2012 Chin. Phys. B 21 050503
[18] Ruyin C, Wanli P, Jianqiang Z and Linru N 2016 Chaos 26 093113
[19] Jianqiang Z, Linru N, Chongyang C and Xinyu Z 2016 AIP Advances 6 075212
[20] Chen R, Chen C and Nie L 2017 Int. J. Mod. Phys. B 31 1750259
[21] Chen R, Pan L, Nie L, Chen C, Zeng C and Liu S 2019 Indian J. Phys. 93 115
[22] I Freidlin M and D Wentzell A Random Perturbations of Dynamical Systems (Berlin, Heidelberg: Springer) p. 2012
[23] Chen H, Shen C, Zhang H and Kurths J 2017 Chaos 27 081102
[24] Chen X, Wu F, Duan J, Kurths J and Li X 2019 Appl. Math. Comput. 348 425
[25] Franovic I, Todorovic K, Perc M, Vasovic N and Buric N 2015 Phys. Rev. E 92 062911
[26] Tsiairis A, Wei P, Chao Y and Duan J 2021 Phys. A 569 125749
[27] Wells D K, Kath W L and Motter A E 2015 Phys. Rev. X 5 031036
[28] Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L and Holling C S 2004 Annual Review of Ecology, Evolution, and Systematics 35 557
[29] Brock W and Carpenter S 2006 Ecology and Society 11 9
[30] Luchinsky D G and McClintock P V E 1997 Nature 389 463
[31] Maier R S and Stein D L 1996 J. Statist. Phys. 83 291
[32] Ludwig D 1975 Siam Review 17 605
[33] Beri S, Mannella R, Luchinsky D G, Silchenko A N and McClintock P V E 2005 Phys. Rev. E 72 036131
[34] Durr D and Bach A 1978 Commun. Math. Phys. 60 153
[35] Onsager L and Machlup S 1953 Phys. Rev. 91 1505
[36] Tisza L and Manning I 1957 Phys. Rev. 105 1695
[37] Chen Y, Gemmer J A, Silber M and Volkening A 2019 Chaos 29 043119
[1] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[2] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[3] Sparse identification method of extracting hybrid energy harvesting system from observed data
Ya-Hui Sun(孙亚辉), Yuan-Hui Zeng(曾远辉), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(12): 120203.
[4] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
[5] Ratchet transport of self-propelled chimeras in an asymmetric periodic structure
Wei-Jing Zhu(朱薇静) and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(4): 040503.
[6] Viewing the noise propagation mechanism in a unidirectional transition cascade from the perspective of stability
Qi-Ming Pei(裴启明), Bin-Qian Zhou(周彬倩), Yi-Fan Zhou(周祎凡), Charles Omotomide Apata, and Long Jiang(蒋龙). Chin. Phys. B, 2021, 30(11): 118704.
[7] A sign-function receiving scheme for sine signals enhanced by stochastic resonance
Zhao-Rui Li(李召瑞), Bo-Hang Chen(陈博航), Hui-Xian Sun(孙慧贤), Guang-Kai Liu(刘广凯), and Shi-Lei Zhu(朱世磊). Chin. Phys. B, 2021, 30(8): 080502.
[8] Quantum walk under coherence non-generating channels
Zishi Chen(陈子石) and Xueyuan Hu(胡雪元). Chin. Phys. B, 2021, 30(3): 030305.
[9] Dynamical analysis for hybrid virus infection system in switching environment
Dong-Xi Li(李东喜), Ni Zhang(张妮). Chin. Phys. B, 2020, 29(9): 090201.
[10] Asymmetric stochastic resonance under non-Gaussian colored noise and time-delayed feedback
Ting-Ting Shi(石婷婷), Xue-Mei Xu(许雪梅), Ke-Hui Sun(孙克辉), Yi-Peng Ding(丁一鹏), Guo-Wei Huang(黄国伟). Chin. Phys. B, 2020, 29(5): 050501.
[11] Novel Woods-Saxon stochastic resonance system for weak signal detection
Yong-Hui Zhou(周永辉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2020, 29(4): 040503.
[12] Transport of velocity alignment particles in random obstacles
Wei-jing Zhu(朱薇静), Xiao-qun Huang(黄小群), Bao-quan Ai(艾保全). Chin. Phys. B, 2018, 27(8): 080504.
[13] Stochastic resonance in an under-damped bistable system driven by harmonic mixing signal
Yan-Fei Jin(靳艳飞). Chin. Phys. B, 2018, 27(5): 050501.
[14] Noise decomposition algorithm and propagation mechanism in feed-forward gene transcriptional regulatory loop
Rong Gui(桂容), Zhi-Hong Li(李治泓), Li-Jun Hu(胡丽君), Guang-Hui Cheng(程光晖), Quan Liu(刘泉), Juan Xiong(熊娟), Ya Jia(贾亚), Ming Yi(易鸣). Chin. Phys. B, 2018, 27(2): 028706.
[15] Improved data analysis method of single-molecule experiments based on probability optimization
Weili Zhai(翟伟利), Guohua Yuan(袁国华), Chao Liu(刘超), Hu Chen(陈虎). Chin. Phys. B, 2018, 27(1): 018703.
No Suggested Reading articles found!