Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 118704    DOI: 10.1088/1674-1056/ac0ee7

Viewing the noise propagation mechanism in a unidirectional transition cascade from the perspective of stability

Qi-Ming Pei(裴启明), Bin-Qian Zhou(周彬倩), Yi-Fan Zhou(周祎凡), Charles Omotomide Apata, and Long Jiang(蒋龙)
School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
Abstract  Noise and noise propagation are inevitable and play a constructive role in various biological processes. The stability of cell homeostasis is also a critical issue. In the unidirectional transition cascade of colon cells, stem cells (SCs) are the source. They differentiate into transit-amplifying cells (TACs), and TACs differentiate into fully differentiated cells (FDCs). Two differentiation processes are irreversible. The stability factor is introduced so that the noise propagation mechanism from the perspective of stability is studied according to the noise propagation formulas. It is found that the value of the stability factor corresponding to the minimum noise in FDCs may be the best choice to enable colon cells to maintain high stability and low noise of the cascade. Moreover, for the source cell, the total noise only includes intrinsic noise; for the downstream cell with self-proliferation capability, the total noise mainly depends on its intrinsic noise and transmitted noise from upstream cells, and its intrinsic noise is dominant. For the downstream cell without self-proliferation capability, the total noise is mainly determined by transmitted noises from upstream cells, and there is a minimum value. This work provides a new approach for studying the mechanism of noise propagation while considering the stability of cell homeostasis in biological systems.
Keywords:  noise      noise propagation      stability      linear approximation  
Received:  15 April 2021      Revised:  25 May 2021      Accepted manuscript online:  28 June 2021
PACS:  87.18.Tt (Noise in biological systems)  
  05.45.-a (Nonlinear dynamics and chaos)  
  05.10.Gg (Stochastic analysis methods)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11605014).
Corresponding Authors:  Qi-Ming Pei, Long Jiang     E-mail:;

Cite this article: 

Qi-Ming Pei(裴启明), Bin-Qian Zhou(周彬倩), Yi-Fan Zhou(周祎凡), Charles Omotomide Apata, and Long Jiang(蒋龙) Viewing the noise propagation mechanism in a unidirectional transition cascade from the perspective of stability 2021 Chin. Phys. B 30 118704

[1] Gui R, Li Z H, Hu L J, Cheng G H, Liu Q, Xiong J, Jia Y and Yi M 2018 Chin. Phys. B 27 028706
[2] Hilfinger A, Norman T M and Paulsson J 2016 Cell Syst. 2 251
[3] Tsimring L S 2014 Rep. Prog. Phys. 77 026601
[4] Raj A and van Oudenaarden A 2008 Cell 135 216
[5] Eldar A and Elowitz M B 2010 Nature 467 167
[6] Zhang N, Zhang H, Liu Z, Ding X, Yang M, Gu H and Ren W 2009 Chin. Phys. Lett. 26 110501
[7] Li Y, Zhang H, Wei C, Yang M, Gu H and Ren W 2009 Chin. Phys. Lett. 26 030504
[8] Ge M, Lu L, Xu Y, Mamatimin R, Pei Q and Jia Y 2020 Chaos Soliton. Fract. 133 109645
[9] Liu Y, Ma J, Xu Y and Jia Y 2019 Int. J. Bifurcat. Chaos 29 1950156
[10] Xu Y, Jia Y, Wang H, Liu Y, Wang P and Zhao Y 2019 Nonlinear Dynam. 95 3237
[11] Cheng G, Gui R, Yao Y and Yi M 2019 Physica A 520 361
[12] Xu Y, Liu M, Zhu Z and Ma J 2020 Chin. Phys. B. 29 098704
[13] Yu H, Meng Z, Liu C, Wang J and Liu J 2021 Chin. Phys. B 30 038703
[14] Zhang Y, Zhou P, Yao Z and Ma J 2021 Pramana J. Phys. 95 49
[15] Ma J, Xu W, Zhou P and Zhang G 2019 Physica A 536 122598
[16] Liu Y, Xu Y and Ma J 2020 Commun. Nonlinear. Sci. Numer. Simulat. 89 105297
[17] Wu F, Ma J and Ren G 2018 J. Zhejiang Univ. Sci. A 19 889
[18] Zhang J, Yuan Z and Zhou T 2009 Phys. Biol. 6 046009
[19] Wang Z and Zhang J 2011 Proc. Natl. Acad. Sci. USA 108 E67
[20] Pedraza J M and van Oudenaarden A 2005 Science 307 1965
[21] Baraskar A A, Deb A and Viswanathan G A 2013 IFAC Proc. Vol. 46 89
[22] Kleijn I T, Krah L H J and Hermsen R 2018 PLoS Comput. Biol. 14 e1006386
[23] Pei Q M, Zhan X, Yang L J, Shen J, Wang L F, Qiu K, Liu T, Kirunda J B, Yousif A A M, Li A B and Jia Y 2015 Phys. Rev. E 92 012721
[24] Hou X F, Zhou B Q, Zhou Y F, Apata C O, Jiang L and Pei Q M 2020 Phys. Rev. E 102 062411
[25] Boukal Y, Zasadzinski M, Darouach M and Radhy N E 2018 Mathematical Techniques of Fractional Order Systems (Advances in Nonlinear Dynamics and Chaos (ANDC)) (Netherlands: Elsevier) pp. 133-158
[26] Chicone C 2012 Mathematics of Complexity and Dynamical Systems (New York: Springer) pp. 1653-1671
[27] Niu L, Chen Y, Shen X and Xu T 2020 Chin. Phys. B 29 087803
[28] Ai D, Qiao H, Zhang S, Luo L, Sun C, Zhang S, Peng C, Qi Q, Jin T, Zhou M and Xu X 2020 Chin. Phys. B 29 090601
[29] Noor N A, Mushahid N, Khan A, Kattan N A, Mahmood A and Ramay S M 2020 Chin. Phys. B 29 097101
[30] Guo H, Cheng T and Li Y 2020 Chin. Phys. B 29 115202
[31] Song X, Li B and Xie L 2020 Chin. Phys. B 29 086201
[32] Liu H, Li S, Wang H and Li G 2017 Chin. Phys. B 26 030504
[33] Zhu L and Wang B 2020 Inform. Sciences 526 1
[34] Annas S, Pratama M I, Rifandi M, Sanusi W and Side S 2020 Chaos Soliton. Fract. 139 110072
[35] Boukhouima A, Lotfi E M, Mahrouf M, Rosa S, Torres D and Yousfi N 2021 Eur. Phys. J. Plus 136 103
[36] Allali K 2021 Biosystems 199 104321
[37] Johnston M D, Edwards C M, Bodmer W F, Maini P K and Chapman S J 2007 Proc. Natl. Acad. Sci. USA 104 4008
[38] Pei Q, Zhan X, Yang L, Bao C, Cao W, Li A, Rozi A and Jia Y 2014 Phys. Rev. E 89 032715
[39] Tang N, Yang X Y, Song L, Zhang J, Li X L, Zhou Z K and Shi Y R 2020 Acta Phys. Sin. 69 010301 (in Chinese)
[40] Duan L, Liu C, Zhao L C and Yang Z Y 2020 Acta Phys. Sin. 69 010501 (in Chinese)
[41] Wang W, Deguchi Y, He Y S and Zhang J Z 2019 Acta Phys. Sin. 68 234303 (in Chinese)
[42] Kim K H, Hong Q and Sauro H M 2013 J. Chem. Phys. 139 144108
[43] Pedraza J M and van Oudenaarden A 2005 Science 307 1965
[44] Paulsson J 2004 Nature 427 415
[45] Gillespie D T 1977 J. Phys. Chem. 81 2340
[46] Ni M, Wang S and Ouyang Q 2008 Chin. Phys. Lett. 25 2702
[47] Oyarzún D A, Lugagne J and Stan G V 2015 ACS Synth. Biol. 4 116
[48] Brett T and Galla T 2013 Phys. Rev. Lett. 110 250601
[49] VanKampen N G 2010 Stochastic Processes in Physics and Chemistry 3rd edn. (Beijing: World Book Publishing Company Beijing Company) pp. 219-240
[50] Xiong L, Ma Y and Tang L 2010 Chin. Phys. Lett. 27 098701
[51] Zhou B, Apata C O, Zhou Y, Jiang L and Pei Q 2022 Physica A 585 126429
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[3] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[4] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[5] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[6] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[7] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[10] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[11] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[12] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[13] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[14] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[15] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
No Suggested Reading articles found!