Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 018104    DOI: 10.1088/1674-1056/23/1/018104
Special Issue: TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
TOPICAL REVIEW—Magnetism, magnetic materials, and interdisciplinary research Prev   Next  

The basis of organic spintronics:Fabrication of organic spin valves

Chen Bin-Bin (陈彬彬), Jiang Sheng-Wei (姜生伟), Ding Hai-Feng (丁海峰), Jiang Zheng-Sheng (蒋正生), Wu Di (吴镝)
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
Abstract  Organic spintronics focuses on utilizing the spin degree of freedom in organic materials because of the long spin relaxation time. The vertical organic spin valve (OSV) is a typical sample structure used to study the spin transport phenomena. However, the fabrication of high quality OSVs is difficult, which results in controversial experiment results and hence hinders the development of organic spintronics. In this work, we describe our recent study on the fabrication of typical vertical organic spin valves, La0.67Sr0.33MnO3 (LSMO)/Alq3/Co. The LSMO bottom electrodes are annealed to obtain an atomically smooth surface and improved magnetic properties. The top Co electrodes are deposited by an indirect deposition method to reduce the interfusion between Co and Alq3. The controlled fabrication process provides much better performance and sample yield of OSVs.
Keywords:  organic spintronics      organic spin valves      magnetoresistance  
Received:  30 November 2013      Revised:  27 December 2013      Accepted manuscript online: 
PACS:  81.05.Fb (Organic semiconductors)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  85.70.Kh (Magnetic thin film devices: magnetic heads (magnetoresistive, inductive, etc.); domain-motion devices, etc.)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2010CB923402 and 2013CB922103), the National Natural Science Foundation of China (Grant Nos. 11222435, 10974084, and 11023002), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, and the Fundamental Research Funds for the Central Universities, China.
Corresponding Authors:  Wu Di     E-mail:  dwu@nju.edu.cn

Cite this article: 

Chen Bin-Bin (陈彬彬), Jiang Sheng-Wei (姜生伟), Ding Hai-Feng (丁海峰), Jiang Zheng-Sheng (蒋正生), Wu Di (吴镝) The basis of organic spintronics:Fabrication of organic spin valves 2014 Chin. Phys. B 23 018104

[1] Rorrest S R 2004 Nature 428 911
[2] Braga D and Horowitz G 2009 Adv. Mater. 21 1473
[3] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[4] Bratkovsky A M 2008 Rep. Prog. Phys. 71 026502
[5] Park S K, Jackson T N, Anthony J E and Mourey D A 2007 Appl. Phys. Lett. 91 063514
[6] Szulczewski G, Sanvito S and Coey M 2009 Nat. Mater. 8 693
[7] Zutic I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[8] Pramanik S, Stefanita C G, Patibandla S, Bandyopadhyay S, Garre K, Harth N and Cahay M 2007 Nat. Nanotech. 2 216
[9] Bass J and Pratt W P 2007 J. Phys.: Condens. Matter 19 183201
[10] Appelbaum I, Huang B and Monsma D 2007 Nature 447 295
[11] Xiong Z H, Wu D, Vardeney Z V and Shi J 2004 Nature 427 821
[12] Dediu V, Hueso L, Bergenti I and Taliani C 2009 Nat. Mater. 8 707
[13] Dediu V, Murgia M, Matacotta F C, Taliani C and Barbanera S 2002 Solid State Commun. 122 181
[14] Wu D, Xiong Z H, Li X G, Vardeny Z V and Shi J 2005 Phys. Rev. Lett. 95 016802
[15] Naber, W J M, Faez S and van der Wiel W G 2007 J. Phys. D 40 R205
[16] Sanvito S 2011 Chem. Soc. Rev. 40 3336
[17] Jiang S W, Yue F J, Wang S and Wu D 2013 Sci. China-Phys. Mech. Astron. 56 142
[18] Ikegami T, Kawayama I, Tonouchi M, Nakao S, Yamashita Y and Tada H 2008 Appl. Phys. Lett. 92 153304
[19] Ozbay A, Nowak E R, Yu Z G, Chu W, Shi Y, Krishnamurthy S, Tang Z and Newman N 2009 Appl. Phys. Lett. 95 232507
[20] Naber W J M, Craciun M F, Lemmens J H J, Arkenbout A H, Palstra T T M, Morpurgo A F and van derWielWG 2010 Org. Electron. 11 743
[21] Burke F, Stamenov P and Coey J M D 2011 Synth. Met. 161 563
[22] Park J H, Vescovo E, Kim H J, Kwon C, Ramesh R and Venkatesan T 1998 Phys. Rev. Lett. 81 1953
[23] Bowen M, Bibes M, Barthelemy A, Contour J P, Anane A, Lemaitre Y and Fert A 2003 Appl. Phys. Lett. 82 233
[24] Wang F J, Xiong Z H,Wu D, Shi J and Vardeny Z V 2005 Syth. Metals 155 172
[25] Koster G, Kropman B L, Rijnders G J H M, Blank D H and Rogalla H 1998 Appl. Phys. Lett. 73 2920
[26] Shi Y J, Zhou Y, Ding H F, Zhang F M, Pi L, Zhang Y H and Wu D 2012 Appl. Phys. Lett. 101 122409
[27] Zener C 1951 Phys. Rev. 82 403
[28] Millis A J, Littlewood P B and Shraiman B I 1995 Phys. Rev. Lett. 74 5144
[29] Millis A J 1996 Phys. Rev. B 53 8434
[30] Chen B B, Zhou Y, Wang S, Shi Y J, Ding H F and Wu D 2013 Appl. Phys. Lett. 103 072402
[31] Yu T, Zhang Q T, Liu D P and Han X F 2013 Appl. Phys. Lett. 102 022401
[32] Tai J C, Huang J C, Chang Y M, Li K S, Hong J Y, Wong S S, Chiang W C and Lin M T 2010 Appl. Phys. Lett. 96 262502
[33] Vinzelberg H, Schumann J, Elefant D, Gangineni R B, Thomas J and Bühner B 2008 J. Appl.Phys. 103 093720
[34] Dediu V, Hueso L E, Bergenti I, Riminucci A, Borgatti F, Graziosi P, Newby C, Casoli F, De Jong M P, Taliani C and Zhan Y 2008 Phys. Rev. B 78 115203
[35] Schulz L, Nuccio L, Willis M, Desai P, Shakya P, Kreouzis T, Malik V K, Bernhard C, Pratt F L, Morley N A, Suter A, Nieuwenhuys G J, Prokscha T, Morenzoni E, Gillin W P and Drew A J 2011 Nat. Mater. 10 39
[36] Sun D, Yin L, Sun C, Guo H, Gai Z, Zhang X G, Ward T Z, Cheng Z and Shen J 2010 Phys. Rev. Lett. 104 236602
[37] Wang S, Shi Y J, Lin L, Chen B B, Yue F J, Du J, Ding H F, Zhang F M and Wu D 2011 Syth. Metals 161 1738
[38] Li F, Zhan Y, Lee T H, Liu X, Chikamatsu A, Guo T F, Lin H J, Huang J C A and Fahlman M 2011 J. Phys. Chem. C 115 16947
[39] Yue F J, Shi Y J, Chen B B, Ding H F, Zhang F M and Wu D 2012 Appl. Phys. Lett. 101 022416
[40] Steil S, Grobmann N, Laux M, Ruffing A, Steil D, Wiesenmayer M, Mathias S, Monti O L A, Cinchetti M and Aeschlimann M 2013 Nat. Phys. 9 242
[41] Drew A J, Hoppler J, Schulz L, Pratt F L, Desai P, Shakya P, Kreouzis T, GillinWP, Suter A, Morley N A, Malik V K, Dubroka A, Kim KW, Bouyanfif H, Bourqui F, Bernhard C, Scheuermann R, Nieuwenhuys G J, Prokscha T and Morenzoni E 2008 Nat. Mater. 8 109
[42] Yu Z G 2011 Phys. Rev. Lett. 106 106602
[43] Nguyen T D, Hukic-Markosian G, Wang F, Wojcik L, Li X G, Ehrenfreund E and Vardeny Z V 2010 Nat. Mater. 9 345
[44] Johnson M and Silsbee R H 1985 Phys. Rev. Lett. 55 1790
[45] Riminucci A, Prezioso M, Pernechele C, Graziosi P, Bergenti I, Cecchini R, Calbucci1 M, Solzi M and Alek Dediu V 2013 Appl. Phys. Lett. 102 092407
[46] Nguyen T D, Ehrenfreund E and Vardeny Z V 2012 Science 337 204
[47] Prezioso M, Riminucci A, Bergenti I, Graziosi P, Brunel D and Dediu V A 2011 Adv. Mater. 23 1371
[48] Raman K V, Kamerbeek A M, Mukherjee A, Atodiresei N, Sen T K, Lazić P, Caciuc V, Michel R, Stalke D, Mandal S K, Blügel S, Münzenberg M and Moodera J S 2013 Nature 493 509
[49] Rocha A R, García-suárez V M, Bailey S W, Lambert C J, Ferrer J and Sanvito S 2005 Nature Mater. 4 335
[50] Wang S, Yue F J, Shi J, Shi Y J, Hu A, Du Y W and D Wu 2011 Appl. Phys. Lett. 98 172501
[51] Sanvito S 2011 Chem. Soc. Rev. 40 3336
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[4] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[5] Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆). Chin. Phys. B, 2022, 31(8): 087303.
[6] Spin transport in epitaxial Fe3O4/GaAs lateral structured devices
Zhaocong Huang(黄兆聪), Wenqing Liu(刘文卿), Jian Liang(梁健), Qingjie Guo(郭庆杰), Ya Zhai(翟亚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(6): 068505.
[7] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[8] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[9] Large positive magnetoresistance in photocarrier-doped potassium tantalites
Rui-Shu Yang(杨睿姝), Ding-Bang Wang(王定邦), Yang Zhao(赵阳), Shuan-Hu Wang(王拴虎), and Ke-Xin Jin(金克新). Chin. Phys. B, 2022, 31(12): 127302.
[10] Observation of quadratic magnetoresistance in twisted double bilayer graphene
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yiru Ji(季怡汝), Jinpeng Tian(田金朋), Fanfan Wu(吴帆帆), Jian Tang(汤建), Yalong Yuan(袁亚龙), Yanchong Zhao(赵岩翀), Xiaozhou Zan(昝晓州), Rong Yang(杨蓉), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(10): 107201.
[11] Sign reversal of anisotropic magnetoresistance and anomalous thickness-dependent resistivity in Sr2CrWO6/SrTiO3 films
Chunli Yao(姚春丽), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Zitao Zhang(张子涛), Weimin Jiang(姜伟民), Qiang Zhao(赵强), Yujie Qiao(乔宇杰), Meihui Chen(陈美慧), Xingyu Chen(陈星宇), Ruifen Dou(窦瑞芬), Changmin Xiong(熊昌民), and Jiacai Nie(聂家财). Chin. Phys. B, 2022, 31(10): 107302.
[12] Probing the magnetization switching with in-plane magnetic anisotropy through field-modified magnetoresistance measurement
Runrun Hao(郝润润), Kun Zhang(张昆), Yinggang Li(李迎港), Qiang Cao(曹强), Xueying Zhang(张学莹), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(1): 017502.
[13] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
[14] Negative tunnel magnetoresistance in a quantum dot induced by interplay of a Majorana fermion and thermal-driven ferromagnetic leads
Peng-Bin Niu(牛鹏斌), Bo-Xiang Cui(崔博翔), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(9): 097401.
[15] Current-dependent positive magnetoresistance inLa0.8Ba0.2MnO3 ultrathin films
Guankai Lin(林冠凯), Haoru Wang(王昊儒), Xuhui Cai(蔡旭晖), Wei Tong(童伟), and Hong Zhu(朱弘). Chin. Phys. B, 2021, 30(9): 097502.
No Suggested Reading articles found!