Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 010504    DOI: 10.1088/1674-1056/23/1/010504
GENERAL Prev   Next  

Robust networked H synchronization of nonidentical chaotic Lur’e systems

Yang De-Dong (杨德东)
School of Control Science and Engineering, Hebei University of Technology, Tianjin 300130, China
Abstract  We mainly investigate the robust networked H synchronization problem of nonidentical chaotic Lur’e systems. In the design of the synchronization scheme, some network characteristics, such as nonuniform sampling, transmission-induced delays, and data packet dropouts, are considered. The parameters of master–slave chaotic Lur’e systems often allow differences. The sufficient condition in terms of linear matrix inequality (LMI) is obtained to guarantee the dissipative synchronization of nonidentical chaotic Lur’e systems in network environments. A numerical example is given to illustrate the validity of the proposed method.
Keywords:  synchronization      Lur’e systems      networked control      dissipativity  
Received:  22 April 2013      Revised:  21 June 2013      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the Natural Science Foundation of China (Grant No. 61203076), the Natural Science Foundation of Tianjin City, China (Grant No. 13JCQNJC03500), the Natural Science Foundation of Hebei Province, China (Grant No. F2012202100), and the Excellent Young Technological Innovation Foundation in Hebei University of Technology, China (Grant No. 2011005).
Corresponding Authors:  Yang De-Dong     E-mail:  Dedongyang@gmail.com

Cite this article: 

Yang De-Dong (杨德东) Robust networked H synchronization of nonidentical chaotic Lur’e systems 2014 Chin. Phys. B 23 010504

[1] Carroll T L and Pecora L M 1991 IEEE Trans. Circ. Syst. 38 453
[2] Wang X Y, Zhang N, Ren X L and Zhang Y L 2011 Chin. Phys. B 20 020507
[3] Wang X Y and Liu L T 2013 Chin. Phys. B 22 050503
[4] Zhou P and Zhu W 2011 Nonlinear Anal.: Real World Appl. 12 811
[5] Zhou P, Ding R and Cao Y X 2012 Nonlinear Dynam. 70 1263
[6] Wang Z, Huang X, Li N and Song X N 2012 Chin. Phys. B 21 050506
[7] Suykens J A K, Curran P F, Vandewalle J and Chua L O 1997 IEEE Trans. Circ. Syst. I: Fund. Theory Appl. 44 891
[8] Liu F, Ren Y, Shan X M and Qiu Z L 2001 Acta Phys. Sin. 50 2318 (in Chinese)
[9] Lu J G and Hill D J 2007 IEEE Trans. Circ. Syst. II: Exp. Briefs 54 710
[10] Han Q L 2007 IEEE Trans. Circ. Syst. I. Regul. Pap. 54 1573
[11] Lu J G and Hill D J 2008 IEEE Trans. Circ. Syst. II: Exp. Briefs 55 586
[12] Ma T D, Zhang H G and Fu J 2008 Chin. Phys. B 17 4407
[13] Chen W H, Lu X and Chen F 2008 Phys. Lett. A 372 4210
[14] Li T, Yu J and Wang Z 2009 Commun. Nonlinear Sci. Numer. Simul. 14 1796
[15] Guo H, Zhong S and Gao F 2009 Appl. Math. Comput. 212 86
[16] Ji D H, Park J H and Won S C 2009 Phys. Lett. A 373 1044
[17] Zhang C K, He Y and Wu M 2009 IEEE Trans. Circ. Syst. II: Exp. Briefs 56 320
[18] Yin C, Zhong S M and Chen W F 2011 Commun. Nonlinear Sci. Numer. Simul. 16 1632
[19] Lee S M, Kwon O M and Park J H 2011 Chin. Phys. B 20 010506
[20] Yang D and Cai K Y 2010 Proceedings of the 8th World Congress on Intelligent Control and Automation (WCICA), p. 4823
[21] Boyd S, Ghauoi L E, Feron E and Balakrishan V 1994 Linear Matrix Inequalities in System and Control Theory (Philadelphia: SIAM)
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[4] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[5] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[6] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[7] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[8] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[9] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[10] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[11] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
[12] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[13] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[14] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[15] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
No Suggested Reading articles found!