Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 010503    DOI: 10.1088/1674-1056/23/1/010503
GENERAL Prev   Next  

Surface structures of equilibrium restricted curvature model on two fractal substrates

Song Li-Jian (宋丽建), Tang Gang (唐刚), Zhang Yong-Wei (张永伟), Han Kui (韩奎), Xun Zhi-Peng (寻之朋), Xia Hui (夏辉), Hao Da-Peng (郝大鹏), Li Yan (李炎)
Department of Physics, China University of Mining and Technology, Xuzhou 221116, China
Abstract  With the aim to probe the effects of the microscopic details of fractal substrates on the scaling of discrete growth models, the surface structures of the equilibrium restricted curvature (ERC) model on Sierpinski arrowhead and crab substrates are analyzed by means of Monte Carlo simulations. These two fractal substrates have the same fractal dimension df, but possess different dynamic exponents of random walk zrw. The results show that the surface structure of the ERC model on fractal substrates are related to not only the fractal dimension df, but also to the microscopic structures of the substrates expressed by the dynamic exponent of random walk zrw. The ERC model growing on the two substrates follows the well-known Family–Vicsek scaling law and satisfies the scaling relations 2α+dfz ≈ 2zrw. In addition, the values of the scaling exponents are in good agreement with the analytical prediction of the fractional Mullins–Herring equation.
Keywords:  equilibrium restricted curvature model      Sierpinski arrowhead      crab fractal substrate      dynamic scaling  
Received:  12 April 2013      Revised:  28 June 2013      Accepted manuscript online: 
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
  64.60.Ht (Dynamic critical phenomena)  
Fund: Project support by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 2013XK04).
Corresponding Authors:  Tang Gang     E-mail:  gangtang@cumt.edu.cn

Cite this article: 

Song Li-Jian (宋丽建), Tang Gang (唐刚), Zhang Yong-Wei (张永伟), Han Kui (韩奎), Xun Zhi-Peng (寻之朋), Xia Hui (夏辉), Hao Da-Peng (郝大鹏), Li Yan (李炎) Surface structures of equilibrium restricted curvature model on two fractal substrates 2014 Chin. Phys. B 23 010503

[1] Family F and Vicsek T 1991 Dynamics of Fractal Surfaces (Singapore: World Scientific Press)
[2] Barabási A L and Stanley H E 1995 Fractal Concepts in Surface Growth (Cambridge: Cambridge University Press)
[3] Meakin P 1998 Fractals, Scaling and Growth Far from Equilibrium (Cambridge: Cambridge University Press)
[4] Halpin-Healy T and Zhang Y C 1995 Phys. Rep. 254 215
[5] Tang G, Hao D P, Xia H, Han K and Xun Z P 2010 Chin. Phys. B 19 100508
[6] Hao D P, Tang G, Xia H, Han K and Xun Z P 2012 Acta Phys. Sin. 61 028102 (in Chinese)
[7] Xun Z P, Tang G, Han K, Hao D P, Xia H, Zhou W, Yang X Q, Wen R J and Chen Y L 2010 Chin. Phys. B 19 070516
[8] Family F and Vicsek T 1985 J. Phys. A 18 L75
[9] Kardar M, Parisi G and Zhang Y C 1986 Phys. Rev. Lett. 56 889
[10] Eden M 1961 Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability (CA: University of California Press) p. 223
[11] Vold M J 1959 J. Colloid Sci. 14 168
[12] Kim J M and Kosterlitz J M 1989 Phys. Rev. Lett. 62 2289
[13] Kim J M and Sarma S D 1993 Phys. Rev. E 48 2599
[14] Lee S B and Kim J M 2009 Phys. Rev. E 80 021101
[15] Horowitz C M, Romá F and Albano E V 2008 Phys. Rev. E 78 061118
[16] Kim D H and Kim J M 2010 J. Stat. Mech. P08008
[17] Lee S B, Jeong H C and Kim J M 2008 J. Stat. Mech. P12013
[18] Lee S B, Jeong H C and Kim J N 2011 J. Korean Phys. Soc. 58 1076
[19] Tang G, Xun Z P, Wen R J, Han K, Xia H, Hao D P, Zhou W, Yang X Q and Chen Y L 2010 Physica A 389 4552
[20] Kim D H, Jang W W and Kim J M 2011 J. Stat. Mech. P10024
[21] Huynh H N and Pruessner G 2010 Phys. Rev. E 82 042103
[22] Lee C and Lee S B 2010 Physica A 389 5053
[23] Kim J M and Kosterlitz J M 1991 J. Phys. A: Math. Gen. 24 5569
[24] Mello B A and Chaves A S 2001 Phys. Rev. E 63 041113
[1] Numerical study of anomalous dynamic scaling behaviour of (1+1)-dimensional Das Sarma—Tamborenea model
Xun Zhi-Peng(寻之朋), Tang Gang(唐刚), Han Kui(韩奎), Hao Da-Peng(郝大鹏), Xia Hui(夏辉), Zhou Wei(周伟), Yang Xi-Quan(杨细全), Wen Rong-Ji(温荣吉), and Chen Yu-Ling(陈玉岭). Chin. Phys. B, 2010, 19(7): 070516.
[2] Dynamic scaling behaviour of late-stage phase separation in Ni75AlxV25-x alloys
Li Yong-Sheng(李永胜), Chen Zheng(陈铮), Lu Yan-Li(卢艳丽), and Xu Guo-Dong(徐国栋). Chin. Phys. B, 2007, 16(3): 854-861.
No Suggested Reading articles found!