|
|
Effects of Li+ on photoluminescence of Sr3SiO5:Sm3+ red phosphor |
Zhang Xin (张新), Xu Xu-Hui (徐旭辉), Qiu Jian-Bei (邱建备), Yu Xue (余雪) |
College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China |
|
|
Abstract The structure and photoluminescence (PL) properties of Sr3SiO5: Sm3+ and Li+-doped Sr3SiO5: Sm3+ red-emitting phosphors were investigated. Samples were prepared by the high-temperature solid-state method. PL spectra show that the concentration quenching occurs when the Sm3+ concentration is beyond 1.3 mol% in Sr3SiO5: Sm3+ phosphor without doping Li+ ions. The concentration-quenching mechanism can be explained by the electric dipole-dipole interaction of Sm3+ ions. The incorporation of Li+ ions into Sr3SiO5: Sm3+ phosphors, as a charge compensator, improves the PL properties. The lithium ions also suppress the concentration quenching in Sm3+ with concentration increased from 1.3 mol% to 1.7 mol%.
|
Received: 18 March 2013
Revised: 08 April 2013
Accepted manuscript online:
|
PACS:
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
42.70.-a
|
(Optical materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11204113), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20115314120001), the China Postdoctoral Science Foundation (Grant No. 2011M501424), and the Natural Science Foundation of Yunnan Province, China (Grant No. 2011FB022). |
Corresponding Authors:
Yu Xue
E-mail: yuyu6593@126.com
|
Cite this article:
Zhang Xin (张新), Xu Xu-Hui (徐旭辉), Qiu Jian-Bei (邱建备), Yu Xue (余雪) Effects of Li+ on photoluminescence of Sr3SiO5:Sm3+ red phosphor 2013 Chin. Phys. B 22 097801
|
[1] |
Chen Y, Yang H K, Park S W, Moon B K, Choi B C, Jeong J H and Kim K H 2012 J. Alloys Compd. 511 123
|
[2] |
Zhou T L, Song Z, Song X P, Bian L and Liu Q L 2010 Chin. Phys. B 19 127808
|
[3] |
Yang Z P, Wang S L, Yang G W, Tian J, Li P L and Li X 2007 J. Chin. Ceramic Soc. 35 1587
|
[4] |
Guo N, Huang Y J, Yang M, Song Y H, Zheng Y H and You H P 2011 Phys. Chem. Chem. Phys. 13 15077
|
[5] |
Shen C Y, Li K and Yang Y 2011 2009 Asia-Pacific Optical Fiber Communication and Optoelectronic International Conference, November 2-6, 2009, Shanghai, China, p. 7635
|
[6] |
Lakshmanan A, Bhaskar R S, Thomas P C, Kumar R S, Kumar V S and Jose M T 2010 Mater. Lett. 64 1809
|
[7] |
Kim K, Moon Y M, Choi S, Jung H K and Nahm S 2008 Mater. Lett. 62 3925
|
[8] |
Reddy K R, Annapurna K and Buddhudu S 1996 Mater. Res. Bull. 31 1355
|
[9] |
Yuan S L, Yang Y X, Fang B and Chen G R 2007 Opt. Mater. 30 535
|
[10] |
Xie A, Yuan X M, Wang F X, Shi Y and Mu Z F 2010 J. Phys. D: Appl. Phys. 43 055101
|
[11] |
Zhang Y, Xu J Y and Zhang T T 2011 J. Inorg. Mater. 26 1341
|
[12] |
Mu Z F, Hu Y H, Chen L and Wang X J 2011 Opt. Mater. 34 89
|
[13] |
Sun J Y, Lai J L, Sun J F and Du H Y 2011 J. Chin. Rare Earth Soc. 24 321
|
[14] |
Kim S H, Lee H J, Kim K P and Yoo J S 2006 Korean J. Chem. Eng. 23 669
|
[15] |
Ji Z G, Zhao S C, Xiang Y, Song Y L and Ye Z Z 2004 Chin. Phys. 13 0561
|
[16] |
Yu H, Deng D G, Li Y Q, Xu S Q, Li Y Y, Yu C P, Ding Y Y, Lu H W, Yin H Y and Nie Q L 2013 Opt. Commun. 289 103
|
[17] |
Cheng G, Liu Q S, Cheng L Q, Lu L P, Sun H Y, Wu Y Q, Bai Z H, Zhang X Y and Qiu G M 2010 J. Chin. Rare Earth Soc. 28 526
|
[18] |
Zhang J C, Zhou M J and Wang Y 2012 Chin. Phys. B 21 124102
|
[19] |
Wang Z J, Li P L, Yang Z P, Guo Q L and Li X 2010 Chin. Phys. B 19 017801
|
[20] |
Wei X D, Cai L Y, Lu F C, Chen X L, Chen X Y and Liu Q L 2009 Chin. Phys. B 18 3555
|
[21] |
Huang P, Cui C E and Wang S 2009 Chin. Phys. B 18 4524
|
[22] |
Jayasankar C K and Babu P 2000 J. Alloys Compd. 307 82
|
[23] |
Yang D L, Lin H, Hou Y Y, Xu L Q, Zhai B, Ban L X, Liu G S, Tang N L, Wang S C, Ma T C, Wang X J and Liu X R 2006 Spectrosc. Spect. Anal. 26 86
|
[24] |
Xia Z G and Liu R S 2012 J. Phys. Chem. C 116 15604
|
[25] |
Blasse G 1968 Phys. Lett. A 28 444
|
[26] |
Liu Y L, Kuang J Y, Lei B F and Shi C S 2005 J. Mater. Chem. 15 4025
|
[27] |
Liao N, Shi L Y, Jia H, Yu X J, Jin D L and Wang L C 2010 Inorg. Mater. 46 1325
|
[28] |
Xie W, Wang Y H, Zou C W, Liang F, Quan J, Zhang J and Shao L 2013 Chin. Phys. B 22 056101
|
[29] |
Luo H D, Liu J, Zheng X, Han L X, Ren K X and Yu X B 2012 J. Mater. Chem. 22 15887
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|