Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 097304    DOI: 10.1088/1674-1056/22/9/097304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of optical pumping on the momentum relaxation time of graphene in the terahertz range

Zuo Zhi-Gao (左志高)a b, Wang Ping (王平)a b, Ling Fu-Ri (凌福日)b, Liu Jin-Song (刘劲松)a, Yao Jian-Quan (姚建铨)a c
a Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China;
b School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China;
c College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
Abstract  The momentum relaxation time of a photoexcited graphene in the THz frequency range has been studied by using terahertz time domain spectroscopy under optical pumping at room temperature. It is found that the momentum relaxation time of the graphene as a function of the optical pumping intensity exhibits a threshold behavior. The features of the momentum relaxation time as a function of the optical pumping intensity are also investigated. The results are useful for understanding the basic underlying physics of graphene scattering as well as finding the possible applications in carbon-based electronics.
Keywords:  graphene      momentum relaxation time      optical pumping      terahertz  
Received:  13 November 2012      Revised:  16 April 2013      Accepted manuscript online: 
PACS:  73.50.Gr (Charge carriers: generation, recombination, lifetime, trapping, mean free paths)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 10974063 and 61177095), the Hubei Natural Science Foundation, China (Grant Nos. 2010CDA001 and 2012FFA074), the Research Foundation of Huazhong University of Science and Technology, China (Grant Nos. 01-09-230904 and 02-16-230008), the PhD Program Foundation of Ministry of Education of China (Grant No. 20100142110042), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. HUST: 2010MS041 and 2011TS001).
Corresponding Authors:  Ling Fu-Ri     E-mail:  lingfuri@163.com

Cite this article: 

Zuo Zhi-Gao (左志高), Wang Ping (王平), Ling Fu-Ri (凌福日), Liu Jin-Song (刘劲松), Yao Jian-Quan (姚建铨) Effect of optical pumping on the momentum relaxation time of graphene in the terahertz range 2013 Chin. Phys. B 22 097304

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2005 Nature 438 197
[3] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[4] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, C.Elias D, Jaszczak J A and Geim A K 2008 Phys. Rev. Lett. 100 016602
[5] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P and Geim A K 2007 Science 315 1379
[6] Pan Y, Shi D X and Gao H J 2007 Chin. Phys. 16 3151
[7] Tang C, Ji L, Meng L J, Sun L Z, Zhang K W and Zhong J X 2009 Acta Phys. Sin. 58 7815 (in Chinese)
[8] Han P Y, Liu W, Xie Y H and Zhang X C 2009 Physics 38 395
[9] Choi H Y, Borondics F and Siegel D A 2009 IEEE 978
[10] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[11] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[12] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[13] Vasko F T and Ryzhii V 2008 Phys. Rev. B 77 195433
[14] Berger C, Song Z, Li T, Li X, Ogbazhi A Y, Feng R, Dai Z, Marchenkov A N, Conrad E H, First P N and Heer W A 2004 J. Phys. Chem. B 108 19912
[15] Rana F 2008 IEEE Trans. Nanotechnol. 7 91
[16] Dubinov A A, Aleshkin V Ya, Ryzhii M, Otsuji T and Ryzhii V 2009 Appl. Phys. Express 2 092301
[17] Ryzhii V, Mitin V, Ryzhii M, Ryabova N and Otsuji T 2008 Appl. Phys. Express 1 063002
[18] Ryzhii V and Ryzhii M 2009 Phys. Rev. B 79 245311
[19] Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A and Avouris P 2010 Science 327 662
[20] Zhao J, Zhang G Y and Shi D X 2013 Chin. Phys. B 22 057701
[21] Mueller T, Xia F and Avouris P 2010 Nat. Photonics 4 297
[22] Lu M, Yuan J, Wen B, Liu J, Cao W Q and Cao M S 2013 Chin. Phys. B 22 037701
[23] Lin Y M, Jenkins K A, Valdes-Garcia A, Small J P, Farmer D B and Avouris P 2009 Nano Lett. 9 422
[24] Xia F, Mueller T, Golizadeh M R, Freitag M, Lin Y M, Tsang J, Perebeinos V and Avouris P 2009 Nano Lett. 9 1039
[25] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
[26] Brian S 2008 Miniature Terahertz Time-domain Spectrometry (Ph.D. dissertation) (New York: Rensselaer Polytechnic Institute)
[27] Dawlaty J M, Shivaraman S, StraitJ, George P, Chandrashekhar M, Rana F, Spencer M G, Veksler D and Chen Y Q 2008 Appl. Phys. Lett. 93 131905
[28] Satou A, Vasko F T and Ryzhii V 2008 Phys. Rev. B 78 115431
[29] Ryzhii V, Ryzhii M and Otsuji T 2007 J. Appl. Phys. 101 083114
[30] Mak K F, Sfeir M Y, Wu Y, Lui C H, Misewich J A and Heinz T F 2008 Phys. Rev. Lett. 101 196405
[31] Zhang H C, Deng L, Wen J H, Liao R, Lai T S and Lin W Z 2001 Science in China Ser. A 44 1340
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[3] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[4] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[5] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[6] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[7] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[8] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[9] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[10] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[11] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[12] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[13] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[14] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[15] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
No Suggested Reading articles found!