Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 096301    DOI: 10.1088/1674-1056/22/9/096301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

High-pressure phonon dispersion of copper by using the modified analytic embedded atom method

Zhang Xiao-Jun (张晓军)a b, Chen Chang-Le (陈长乐)a, Feng Fei-Long (凤飞龙)b
a Shaanxi Key Laboratory of Condensed Matter Structures and Properties and Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China;
b School of Science, Xi’an Polytechnic University, Xi’an 710048, China
Abstract  By using the Born-von Kármán theory of lattice dynamics and the modified analytic embedded atom method, we reproduce the experimental results of the phonon dispersion in fcc metal Cu at zero pressure along three high symmetry directions and four off-symmetry directions, and then simulate the phonon dispersion curves of Cu at high pressures of 50, 100, and 150 GPa. The results show that the shapes of dispersion curves at high pressures are very similar to that at zero pressure. All the vibration frequencies of Cu in all vibration branches at high pressures are larger than the results at zero pressure, and increase correspondingly as pressure reaches 50, 100, and 150 GPa sequentially. Moreover, on the basis of phonon dispersion, we calculate the values of specific heat of Cu at different pressures. The prediction of thermodynamic quantities lays a significant foundation for guiding and judging experiments of thermodynamic properties of solids under high pressures.
Keywords:  phonon dispersion      high pressure      simulation      modified analytic embedded atom method  
Received:  21 December 2012      Revised:  21 April 2013      Accepted manuscript online: 
PACS:  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
  62.50.-p (High-pressure effects in solids and liquids)  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
  12.39.Pn (Potential models)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61078057 and 11204227) and the Scientific Research Program of Education Department of Shaanxi Province, China (Grant No. 12JK0958).
Corresponding Authors:  Chen Chang-Le     E-mail:  chenchl@nwpu.edu.cn

Cite this article: 

Zhang Xiao-Jun (张晓军), Chen Chang-Le (陈长乐), Feng Fei-Long (凤飞龙) High-pressure phonon dispersion of copper by using the modified analytic embedded atom method 2013 Chin. Phys. B 22 096301

[1] Wang Y, Hector L G and Zhang H 2008 Phys. Rev. B 78 104113
[2] Wang J F, Chen W Z and Jiang Z Y 2012 Chin. Phys. B 21 077102
[3] Yang Y H, Dong S L and Wang L 2008 Chin. Phys. B 17 270
[4] Shi L W, Duan Y F, Yang X Q and Tang G 2012 Chin. Phys. Lett. 28 100503
[5] Ozisik H B, Colakoglu K and Deligoz E 2012 Comput. Mater. Sci. 51 83
[6] Mittal R, Chaplot S L, Bose P P and Choudhury N 2007 J. Phys.: Condens. Ser. 92 012143
[7] Sha X W and Cohen R E 2006 Phys. Rev. B 73 104303
[8] Wortmanna G, Ponkratza U, Bielemeiera B and Rupprechtc K 2008 High Press. Res. 28 545
[9] Wagner J M and Bechstedt F 2000 Phys. Rev. B 62 4526
[10] Mujica A, Rubio A, Munoz A and Needs R J 2003 Rev. Mod. Phys. 75 863
[11] Fang H, Liu B and Gua M 2010 Physica B 405 732
[12] Hu C E, Zeng Z Y and Zhang L 2010 J. Appl. Phys. 107 093509
[13] Dow M S and Baskes M I 1983 Phys. Rev. Lett. 50 1285
[14] Dow M S and Baskes M I 1984 Phys. Rev. B 29 6443
[15] Ouyang Y F, Zhang B W, Liao S Z and Jin Z P 1996 Z. Phys. B 101 161
[16] Zhang B W, Ouyang Y F, Liao S Z and Jin Z P 1999 Phys. B 262 218
[17] Xin H, Zhang J M, Wei X M and Xu K W 2005 Surf. Interface Anal. 37 608
[18] Zhang J M, Wei X M and Xin H 2005 Appl. Sur. Sci. 243 1
[19] Wen Y N and Zhang J M 2007 Solid State Commun. 144 163
[20] Hu W Y, Shu X L and Zhang B W 2002 Comput. Mater. Sci. 23 175
[21] Zhang J M, Song X L and Zhang X J 2006 Surf. Sci. 600 1277
[22] Kazanc S, Ozgen S and Adiguzel O 2003 Physica B 334 375
[23] Gurler Y and Ozgen S 2003 Mater Lett. 57 4336
[24] Rose J H, Smith J R, Guinea F and Ferrante J 1984 Phys. Rev. B 29 2963
[25] Vinet P, Rose J H, Ferrante J and Smith J R 1989 J. Phys.: Condens. Matter 1 1941
[26] Dewaele A, Loubeyre P and Mezouar M 2004 Phys. Rev. B 70 094112
[27] Zhang X J and Chen C L 2012 J. Low Temp. Phys. 169 40
[28] Svensson E C, Vrockhouse B M and Rowe J M 1967 Phys. Rev. 155 619
[29] Xie J J and Chen S P 2000 Phys. Rev. B 62 3624
[30] Monkhorst H J 1976 Phys. Rev. B 13 5188
[31] Chen H H, Li Z and Cheng Y 2011 Physica B 406 3338
[32] Zhang D and Sun J X 2012 Chin. Phys. B 21 080508
[33] Hultgern R, Orr R L and Anderson P D 1963 Selected Values of Thermodynamic Properties of Metals and Alloys (New York: Wiley)
[34] Zeng Z Y, Hu C E and Cai L C 2010 J. Phys. Chem. B 114 298
[35] Umehara I, Hedo M and Tomioka F 2007 J. Phys. Soc. Jpn. 76 206
[36] Aquino N 2009 Rev. Mex. Fis. 55 125
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[3] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[4] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[5] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[6] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[7] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[8] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[9] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[10] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[11] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[12] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[13] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[14] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[15] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
No Suggested Reading articles found!