Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 096401    DOI: 10.1088/1674-1056/22/9/096401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Copolymer–homopolymer mixtures in a nanopore

Zhang Ling-Cui (张玲翠), Sun Min-Na(孙敏娜), Pan Jun-Xing(潘俊星), Wang Bao-Feng (王宝凤), Zhang Jin-Jun (张进军), Wu Hai-Shun (武海顺)
School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, China
Abstract  We have performed the cell dynamics simulation with the time-dependent Ginzburg-Landau theory to study the self-assembled morphology of A-B diblock copolymers and C homopolymers in a neutral nanopore. The nanopore diameter and length are systematically varied to examine their effects on the structures of various morphologies and their phase transition. From the simulation, it is observed that the equilibrium morphology of the confined system is sensitive to pore diameter D and pore length Lpore, the phase behavior in neutral nanopores is due to an interplay of two factors: the surface effect and the extension effect. When the nanopore length and the lamellae spacing are not commensurate, the surface effect prevails at small nanopores (small diameters or short lengths), the extension effect takes over at larger nanopores (large diameters or long lengths). When the nanopore length and the lamellae spacing are commensurate, the surface effect dominates. Furthermore, the interactions between different monomers are also discussed and we obtain a transition from a tilted pancakes/cylinder structure (Ltilted) to a concentric cylindrical structure with defects and to a concentric cylindrical structure (L). We also investigate the effect of the relative concentrations of diblock copolymer-homopolymer and obtain a transition in which the position of the C blocks changes from the outer of the cylinder to the middle of the cylinder and then to the inner of the cylinder with the concentration of the C blocks decreasing.
Keywords:  copolymer-homopolymer mixtures      nanopore      self-assembled morphology      phase transition  
Received:  18 December 2012      Revised:  05 March 2013      Accepted manuscript online: 
PACS:  64.75.Va (Phase separation and segregation in polymer blends/polymeric solutions)  
  64.75.Yz (Self-assembly)  
  83.80.Uv (Block copolymers)  
  83.80.Tc (Polymer blends)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21031003), the Natural Science Foundation of Shanxi Province, China (Grant No. 2007011055), the Soft Science Program of Shanxi Province, China (Grant No. 2011041015-01), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20121404110004 and 20091404120002), and the Research Foundation for Excellent Talents of Shanxi Provincial Department of Human Resources and Social Security, China.
Corresponding Authors:  Zhang Jin-Jun     E-mail:  zhangjinjun@sxnu.edu.cn

Cite this article: 

Zhang Ling-Cui (张玲翠), Sun Min-Na(孙敏娜), Pan Jun-Xing(潘俊星), Wang Bao-Feng (王宝凤), Zhang Jin-Jun (张进军), Wu Hai-Shun (武海顺) Copolymer–homopolymer mixtures in a nanopore 2013 Chin. Phys. B 22 096401

[1] Park M, Harrison C, Chainkin P M, Register R A and Adamson D H 1997 Science 267 1401
[2] Li Y Y, Zhou Y and Zhang G Z 2006 Chin. Phys. 15 985
[3] Hamley I W 2003 Nanotechnology 14 R39
[4] Park C, Yoon J and Thomas E L 2003 Polymer 44 6725
[5] Wang X H, Li S B, Zhang L X and Liang H J 2011 Chin. Phys. B 20 083601
[6] Broz P, Driamov S, Ziegler J, Ben-Haim N, Marsch S, Meier W and Hunziker P 2006 Nano Lett. 6 2349
[7] Chen W Q, Wei H, Li S L, Feng J, Nie J, Zhang X Z and Zhuo R X 2008 Polymer 49 3965
[8] Sivaniah E, Hayashi Y, Matsubara S, Kiyono S, Hashimoto T, Fukunaga K, Kramer E J and Mates T 2005 Macromolecules 38 1837
[9] Fukunaga K, Hashimoto T, Elbs H and Krausch G 2003 Macromolecules 36 2852
[10] Rong L X, Wei L H, Dong B Z, Hong X G, Li F M and Li Z C 2003 Chin. Phys. 12 771
[11] Olszowka V, Tsarkova L and Boker A 2009 Soft Matter 5 812
[12] Knoll A, Tsarkova L and Krausch G 2007 Nano Lett. 7 843
[13] Zoelen W and Brinke G 2009 Soft Matter 5 1568
[14] Sakurai S 2008 Polymer 49 2781
[15] Xu T, Craig J H and Russell T P 2003 Macromolecules 36 61782
[16] Boker A, Schmidt K, Knoll A, Zettl H, Hansel H, Urban V, Abetz V and Krausch G 2006 Polymer 47 849
[17] Matsen M W 2006 Soft Matter 2 1048
[18] Schmidt K, Boker A, Zettl H, Schubert, Hansel H, Fischer F, Weiss T M, Abetz V, Zvelindovsky A V, Sevink G J A and Krausch G 2005 Langmuir 21 11974
[19] Boker A, Elbs H, Hansel H, Knoll A, Ludwigs S, Zettl H, Zvelindovsky A V, Sevink G J A, Urban V, Abetz V, Muller A H E and Krausch G 2003 Macromolecules 36 8078
[20] Sun M N, Zhang J J, Wang B F, Wu H S and Pan J X 2011 Phys. Rev. E 84 011802
[21] He L L, Zhang R F and Ji Y Y 2012 Chin. Phys. B 21 088301
[22] Pinna M and Zvelindovsky A V 2008 Soft Matter 4 316
[23] Hong Y R, Admson D H, Chainkin P M and Register R A 2009 Soft Matter 5 1687
[24] Kellogg G J, Walton D G, Mayes A M, Lambooy P, Russell T P, Gallagher P D and Satija S K 1996 Phys. Rev. Lett. 76 2503
[25] Huang E, Russell T P, Harrison C, Chaikin P M, Register R A, Hawker C J and Mays J 1998 Macromolecules 31 7641
[26] Han Y Y, Cui J and Jiang W 2008 Macromolecules 41 6239
[27] Wang Q, Yan Q, Nealey P F and de Pablo J J 2000 Macromolecules 33 4512
[28] Matsen M W 1997 J. Chem. Phys. 106 7781
[29] Horvat A, Lyakhova K S, Sevink G J A, Zvelindovsky A V and Magerle R 2004 J. Chem. Phys. 120 1117
[30] Lyakhova K S, Sevink G J A, Zvelindovsky A V, Horvat A and Magerle R 2004 J. Chem. Phys. 120 1127
[31] Horvat A, Sevink G J A, Zvelindovsky A V, Krekhov A and Tsarkova L 2008 ACS Nano 2 1143
[32] Pan J X, Zhang J J, Wang B F, Wu H S and Sun M N 2013 Chin. Phys. B 22 026401
[33] Knoll A, Lyakhova K S, Horvat A, Krausch G, Sevink G J A, Zvelindovsky A V and Magerle R 2004 Nat. Mater. 3 886
[34] Knoll A, Horvat A, Lyakhova K S, Krausch G, Sevink G J A, Zvelindovsky A V and Magerle R 2002 Phys. Rev. Lett. 89 035501
[35] Knoll A, Magerle R and Kraush G 2004 J. Chem. Phys. 120 1105
[36] Xiang H Q, Shin K, Kim T, Moon S I, McCarthy T J and Russell T P 2004 Macromolecules 37 5660
[37] Shin K, Xiang H Q, Moon S I, Kim T, McCarthy T J and Russel T P 2004 Science 306 76
[38] Sun Y, Steinhart M, Zschech D, Adhikari R, Michler G H and Gosele U 2005 Macromole. Rapid Commun. 26 369
[39] Xiang H Q, Shin K, Kim T, Moon S I, McCarthy T J and Russell T P 2005 Macromolecules 38 1055
[40] Xiang H Q, Shin K, Kim T, Moon S I, McCarthy T J and Russell T P 2005 J. Polym. Sci. Part B: Polym. Phys. 43 3377
[41] Dobriyal P, Xiang H Q, Kazuyuki M, Chen J T, Jinnai H and Russell T P 2009 Macromolecules 42 9082
[42] Ma M, Krikorian V, Yu J H, Thomas E L and Rutledge G C 2006 Nano Lett. 6 2969
[43] Ma M, Titievsky K, Thomas E L and Rutledge G C 2009 Nano Lett. 9 1678
[44] Chen D, Zhao W, Wei D G and Russell T P 2011 Macromolecules 44 8020
[45] Wu Y Y, Cheng G S, Katsov K, Sides S W, Wang J F, Tang J, Fredrickson G H, Moskovits M and Stucky G D 2004 Nat. Mater. 3 816
[46] He X H, Song M, Liang H J and Pan C Y 2001 J. Chem. Phys. 114 10510
[47] Sevink G J A, Zvelindovsky A V, Fraaije J G E M and Huinink H P 2001 J. Chem. Phys. 115 8226
[48] Li W H, Wickham R A and Garbary R A 2006 Macromolecules 39 806
[49] Chen P, He X H and Liang H J 2006 J. Chem. Phys. 124 104906
[50] Yu B, Sun P C, Chen T H, Jin Q H, Ding D T, Li B H and Shi A C 2006 Phys. Rev. Lett. 96 138306
[51] Feng J, Liu H L and Hu Y 2006 Macromol. Theory Simul. 15 674
[52] Feng J and Ruckenstein E 2006 Macromolecules 39 4899
[53] Xiao X Q, Huang Y M, Liu H L and Hu Y 2007 Macromol. Theory Simul. 16 732
[54] Sevink G J A and Zvelindovsky A V 2008 J. Chem. Phys. 128 084901
[55] Wang Z, Li B H, Jin Q H, Ding D T and Shi A C 2008 Macromol. Theory Simul. 17 86
[56] Wang Z, Li B H, Jin Q H, Ding D T and Shi A C 2008 Macromol. Theory Simul. 17 301
[57] Pinna M, Guo X H and Zvelindovsky A V 2009 J. Chem. Phys. 131 214902
[58] Chen P, Liang H J and Shi A C 2007 Macromolecules 40 7329
[59] Wang Q 2007 J. Chem. Phys. 126 024903
[60] He X H, Liang H J, Song M and Pan C Y 2002 Macromol. Theory Simul. 11 379
[61] Li W H and Wickham R A 2006 Macromolecules 39 8492
[62] Yu B, Sun P C, Chen T H, Jin Q H, Ding D T, Li B H and Shi A C 2007 J. Chem. Phys. 127 114906
[63] Yu B, Jin Q H, Ding D T, Li B H and Shi A C 2008 Macromolecules 41 4042
[64] Morita H, Kawakatsu T, Doi M, Yamaguchi D, Takenaka M and Hashimoto T 2004 J. Phys. Soc. Jpn. 73 1371
[65] Jiang Y Y, Li H, Li Y F, Yu H Q, Liew K M, He Y Z and Liu X F 2011 ACS Nano 5 2126
[66] Yu H Q, Li H, Zhang J X, Liu X F and Liew K M 2010 Carbon 48 417
[67] Li Y F, Sun F W and Li H 2011 J. Phys. Chem. C 115 18459
[68] Jackson A M, Myerson J W and Stellacci F 2004 Nat. Mater. 3 330
[69] Yabu H, Higuchi T, Ljiro K and Shimomura M 2005 Chaos 15 047505
[70] Yabu H, Higuchi T and Shimomura M 2005 Adv. Mater. 17 2062
[71] Kim H, Daniels E S, Li S, Mokkapati V K and Kardos K 2007 J. Polym. Sci. Part A: Polym. Chem. 45 1038
[72] Such G K, Tjipto E, Postma A, Johnston A P R and Caruso F 2007 Nano Lett. 7 1706
[73] Higuchi T, Yabu H and Shimomura M 2007 J. Nanosci. Nanotechnol. 7 856
[74] Tajima A, Higuchi T, Yabu H and Shimomura M 2007 Colloids and Surfaces A: Physicochem. Eng. Aspects 313--314 332
[75] Rider D A, Chen J I L, Eloi J C, Arsenault A C, Russell T P, Ozin G A and Manners I 2008 Macromolecules 41 2250
[76] Higuchi T, Tajima A, Yabu H and Shimomura M 2008 Soft Matter 4 1302
[77] Tang P, Qiu F, Zhang H D and Yang Y L 2005 Phys. Rev. E 72 016710
[78] Li L, Matsunaga K, Zhu J T, Higuchi T, Yabu H, Shimomura M, Jinnai H, Hayward R C and Russell T P 2010 Macromolecules 43 7807
[79] Pinna M, Hiltl S, Guo X H, Boker A and Zvelindovsky A V 2010 ACS Nano 4 2845
[80] Huh J, Jung J Y, Lee J U, Cho H, Park S, Park C and Jo W H 2011 ACS Nano 5 115
[81] Zhang J J, Jin G J and Ma Y Q 2005 Phys. Rev. E 71 051803
[82] Zhang J J, Jin G J and Ma Y Q 2005 Eur. Phys. J. E 18 359
[83] Zhang J J, Jin G J and Ma Y Q 2006 J. Phys.: Condens. Matter 18 837
[84] Ohta T and Ito A 1995 Phys. Rev. E 52 5250
[85] Ito A 1998 Phys. Rev. E 58 6158
[86] Komura S and Kodama H 1997 Phys. Rev. E 55 1722
[87] Roan J and Shakhnovich E I 1999 Phys. Rev. E 59 2109
[88] Oono Y and Puri S 1987 Phys. Rev. Lett. 58 836
[89] Puri S and Oono Y 1988 Phys. Rev. A 38 1542
[90] Oono Y and Puri S 1988 Phys. Rev. A 38 434
[91] Shinozaki A and Oono Y 1992 Phys. Rev. A 45 R2161
[92] Shinozaki A and Oono Y 1993 Phys. Rev. E 48 2622
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[8] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[12] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[13] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[14] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!