CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Copolymer–homopolymer mixtures in a nanopore |
Zhang Ling-Cui (张玲翠), Sun Min-Na(孙敏娜), Pan Jun-Xing(潘俊星), Wang Bao-Feng (王宝凤), Zhang Jin-Jun (张进军), Wu Hai-Shun (武海顺) |
School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, China |
|
|
Abstract We have performed the cell dynamics simulation with the time-dependent Ginzburg-Landau theory to study the self-assembled morphology of A-B diblock copolymers and C homopolymers in a neutral nanopore. The nanopore diameter and length are systematically varied to examine their effects on the structures of various morphologies and their phase transition. From the simulation, it is observed that the equilibrium morphology of the confined system is sensitive to pore diameter D and pore length Lpore, the phase behavior in neutral nanopores is due to an interplay of two factors: the surface effect and the extension effect. When the nanopore length and the lamellae spacing are not commensurate, the surface effect prevails at small nanopores (small diameters or short lengths), the extension effect takes over at larger nanopores (large diameters or long lengths). When the nanopore length and the lamellae spacing are commensurate, the surface effect dominates. Furthermore, the interactions between different monomers are also discussed and we obtain a transition from a tilted pancakes/cylinder structure (L⊥tilted) to a concentric cylindrical structure with defects and to a concentric cylindrical structure (L‖). We also investigate the effect of the relative concentrations of diblock copolymer-homopolymer and obtain a transition in which the position of the C blocks changes from the outer of the cylinder to the middle of the cylinder and then to the inner of the cylinder with the concentration of the C blocks decreasing.
|
Received: 18 December 2012
Revised: 05 March 2013
Accepted manuscript online:
|
PACS:
|
64.75.Va
|
(Phase separation and segregation in polymer blends/polymeric solutions)
|
|
64.75.Yz
|
(Self-assembly)
|
|
83.80.Uv
|
(Block copolymers)
|
|
83.80.Tc
|
(Polymer blends)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21031003), the Natural Science Foundation of Shanxi Province, China (Grant No. 2007011055), the Soft Science Program of Shanxi Province, China (Grant No. 2011041015-01), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20121404110004 and 20091404120002), and the Research Foundation for Excellent Talents of Shanxi Provincial Department of Human Resources and Social Security, China. |
Corresponding Authors:
Zhang Jin-Jun
E-mail: zhangjinjun@sxnu.edu.cn
|
Cite this article:
Zhang Ling-Cui (张玲翠), Sun Min-Na(孙敏娜), Pan Jun-Xing(潘俊星), Wang Bao-Feng (王宝凤), Zhang Jin-Jun (张进军), Wu Hai-Shun (武海顺) Copolymer–homopolymer mixtures in a nanopore 2013 Chin. Phys. B 22 096401
|
[1] |
Park M, Harrison C, Chainkin P M, Register R A and Adamson D H 1997 Science 267 1401
|
[2] |
Li Y Y, Zhou Y and Zhang G Z 2006 Chin. Phys. 15 985
|
[3] |
Hamley I W 2003 Nanotechnology 14 R39
|
[4] |
Park C, Yoon J and Thomas E L 2003 Polymer 44 6725
|
[5] |
Wang X H, Li S B, Zhang L X and Liang H J 2011 Chin. Phys. B 20 083601
|
[6] |
Broz P, Driamov S, Ziegler J, Ben-Haim N, Marsch S, Meier W and Hunziker P 2006 Nano Lett. 6 2349
|
[7] |
Chen W Q, Wei H, Li S L, Feng J, Nie J, Zhang X Z and Zhuo R X 2008 Polymer 49 3965
|
[8] |
Sivaniah E, Hayashi Y, Matsubara S, Kiyono S, Hashimoto T, Fukunaga K, Kramer E J and Mates T 2005 Macromolecules 38 1837
|
[9] |
Fukunaga K, Hashimoto T, Elbs H and Krausch G 2003 Macromolecules 36 2852
|
[10] |
Rong L X, Wei L H, Dong B Z, Hong X G, Li F M and Li Z C 2003 Chin. Phys. 12 771
|
[11] |
Olszowka V, Tsarkova L and Boker A 2009 Soft Matter 5 812
|
[12] |
Knoll A, Tsarkova L and Krausch G 2007 Nano Lett. 7 843
|
[13] |
Zoelen W and Brinke G 2009 Soft Matter 5 1568
|
[14] |
Sakurai S 2008 Polymer 49 2781
|
[15] |
Xu T, Craig J H and Russell T P 2003 Macromolecules 36 61782
|
[16] |
Boker A, Schmidt K, Knoll A, Zettl H, Hansel H, Urban V, Abetz V and Krausch G 2006 Polymer 47 849
|
[17] |
Matsen M W 2006 Soft Matter 2 1048
|
[18] |
Schmidt K, Boker A, Zettl H, Schubert, Hansel H, Fischer F, Weiss T M, Abetz V, Zvelindovsky A V, Sevink G J A and Krausch G 2005 Langmuir 21 11974
|
[19] |
Boker A, Elbs H, Hansel H, Knoll A, Ludwigs S, Zettl H, Zvelindovsky A V, Sevink G J A, Urban V, Abetz V, Muller A H E and Krausch G 2003 Macromolecules 36 8078
|
[20] |
Sun M N, Zhang J J, Wang B F, Wu H S and Pan J X 2011 Phys. Rev. E 84 011802
|
[21] |
He L L, Zhang R F and Ji Y Y 2012 Chin. Phys. B 21 088301
|
[22] |
Pinna M and Zvelindovsky A V 2008 Soft Matter 4 316
|
[23] |
Hong Y R, Admson D H, Chainkin P M and Register R A 2009 Soft Matter 5 1687
|
[24] |
Kellogg G J, Walton D G, Mayes A M, Lambooy P, Russell T P, Gallagher P D and Satija S K 1996 Phys. Rev. Lett. 76 2503
|
[25] |
Huang E, Russell T P, Harrison C, Chaikin P M, Register R A, Hawker C J and Mays J 1998 Macromolecules 31 7641
|
[26] |
Han Y Y, Cui J and Jiang W 2008 Macromolecules 41 6239
|
[27] |
Wang Q, Yan Q, Nealey P F and de Pablo J J 2000 Macromolecules 33 4512
|
[28] |
Matsen M W 1997 J. Chem. Phys. 106 7781
|
[29] |
Horvat A, Lyakhova K S, Sevink G J A, Zvelindovsky A V and Magerle R 2004 J. Chem. Phys. 120 1117
|
[30] |
Lyakhova K S, Sevink G J A, Zvelindovsky A V, Horvat A and Magerle R 2004 J. Chem. Phys. 120 1127
|
[31] |
Horvat A, Sevink G J A, Zvelindovsky A V, Krekhov A and Tsarkova L 2008 ACS Nano 2 1143
|
[32] |
Pan J X, Zhang J J, Wang B F, Wu H S and Sun M N 2013 Chin. Phys. B 22 026401
|
[33] |
Knoll A, Lyakhova K S, Horvat A, Krausch G, Sevink G J A, Zvelindovsky A V and Magerle R 2004 Nat. Mater. 3 886
|
[34] |
Knoll A, Horvat A, Lyakhova K S, Krausch G, Sevink G J A, Zvelindovsky A V and Magerle R 2002 Phys. Rev. Lett. 89 035501
|
[35] |
Knoll A, Magerle R and Kraush G 2004 J. Chem. Phys. 120 1105
|
[36] |
Xiang H Q, Shin K, Kim T, Moon S I, McCarthy T J and Russell T P 2004 Macromolecules 37 5660
|
[37] |
Shin K, Xiang H Q, Moon S I, Kim T, McCarthy T J and Russel T P 2004 Science 306 76
|
[38] |
Sun Y, Steinhart M, Zschech D, Adhikari R, Michler G H and Gosele U 2005 Macromole. Rapid Commun. 26 369
|
[39] |
Xiang H Q, Shin K, Kim T, Moon S I, McCarthy T J and Russell T P 2005 Macromolecules 38 1055
|
[40] |
Xiang H Q, Shin K, Kim T, Moon S I, McCarthy T J and Russell T P 2005 J. Polym. Sci. Part B: Polym. Phys. 43 3377
|
[41] |
Dobriyal P, Xiang H Q, Kazuyuki M, Chen J T, Jinnai H and Russell T P 2009 Macromolecules 42 9082
|
[42] |
Ma M, Krikorian V, Yu J H, Thomas E L and Rutledge G C 2006 Nano Lett. 6 2969
|
[43] |
Ma M, Titievsky K, Thomas E L and Rutledge G C 2009 Nano Lett. 9 1678
|
[44] |
Chen D, Zhao W, Wei D G and Russell T P 2011 Macromolecules 44 8020
|
[45] |
Wu Y Y, Cheng G S, Katsov K, Sides S W, Wang J F, Tang J, Fredrickson G H, Moskovits M and Stucky G D 2004 Nat. Mater. 3 816
|
[46] |
He X H, Song M, Liang H J and Pan C Y 2001 J. Chem. Phys. 114 10510
|
[47] |
Sevink G J A, Zvelindovsky A V, Fraaije J G E M and Huinink H P 2001 J. Chem. Phys. 115 8226
|
[48] |
Li W H, Wickham R A and Garbary R A 2006 Macromolecules 39 806
|
[49] |
Chen P, He X H and Liang H J 2006 J. Chem. Phys. 124 104906
|
[50] |
Yu B, Sun P C, Chen T H, Jin Q H, Ding D T, Li B H and Shi A C 2006 Phys. Rev. Lett. 96 138306
|
[51] |
Feng J, Liu H L and Hu Y 2006 Macromol. Theory Simul. 15 674
|
[52] |
Feng J and Ruckenstein E 2006 Macromolecules 39 4899
|
[53] |
Xiao X Q, Huang Y M, Liu H L and Hu Y 2007 Macromol. Theory Simul. 16 732
|
[54] |
Sevink G J A and Zvelindovsky A V 2008 J. Chem. Phys. 128 084901
|
[55] |
Wang Z, Li B H, Jin Q H, Ding D T and Shi A C 2008 Macromol. Theory Simul. 17 86
|
[56] |
Wang Z, Li B H, Jin Q H, Ding D T and Shi A C 2008 Macromol. Theory Simul. 17 301
|
[57] |
Pinna M, Guo X H and Zvelindovsky A V 2009 J. Chem. Phys. 131 214902
|
[58] |
Chen P, Liang H J and Shi A C 2007 Macromolecules 40 7329
|
[59] |
Wang Q 2007 J. Chem. Phys. 126 024903
|
[60] |
He X H, Liang H J, Song M and Pan C Y 2002 Macromol. Theory Simul. 11 379
|
[61] |
Li W H and Wickham R A 2006 Macromolecules 39 8492
|
[62] |
Yu B, Sun P C, Chen T H, Jin Q H, Ding D T, Li B H and Shi A C 2007 J. Chem. Phys. 127 114906
|
[63] |
Yu B, Jin Q H, Ding D T, Li B H and Shi A C 2008 Macromolecules 41 4042
|
[64] |
Morita H, Kawakatsu T, Doi M, Yamaguchi D, Takenaka M and Hashimoto T 2004 J. Phys. Soc. Jpn. 73 1371
|
[65] |
Jiang Y Y, Li H, Li Y F, Yu H Q, Liew K M, He Y Z and Liu X F 2011 ACS Nano 5 2126
|
[66] |
Yu H Q, Li H, Zhang J X, Liu X F and Liew K M 2010 Carbon 48 417
|
[67] |
Li Y F, Sun F W and Li H 2011 J. Phys. Chem. C 115 18459
|
[68] |
Jackson A M, Myerson J W and Stellacci F 2004 Nat. Mater. 3 330
|
[69] |
Yabu H, Higuchi T, Ljiro K and Shimomura M 2005 Chaos 15 047505
|
[70] |
Yabu H, Higuchi T and Shimomura M 2005 Adv. Mater. 17 2062
|
[71] |
Kim H, Daniels E S, Li S, Mokkapati V K and Kardos K 2007 J. Polym. Sci. Part A: Polym. Chem. 45 1038
|
[72] |
Such G K, Tjipto E, Postma A, Johnston A P R and Caruso F 2007 Nano Lett. 7 1706
|
[73] |
Higuchi T, Yabu H and Shimomura M 2007 J. Nanosci. Nanotechnol. 7 856
|
[74] |
Tajima A, Higuchi T, Yabu H and Shimomura M 2007 Colloids and Surfaces A: Physicochem. Eng. Aspects 313--314 332
|
[75] |
Rider D A, Chen J I L, Eloi J C, Arsenault A C, Russell T P, Ozin G A and Manners I 2008 Macromolecules 41 2250
|
[76] |
Higuchi T, Tajima A, Yabu H and Shimomura M 2008 Soft Matter 4 1302
|
[77] |
Tang P, Qiu F, Zhang H D and Yang Y L 2005 Phys. Rev. E 72 016710
|
[78] |
Li L, Matsunaga K, Zhu J T, Higuchi T, Yabu H, Shimomura M, Jinnai H, Hayward R C and Russell T P 2010 Macromolecules 43 7807
|
[79] |
Pinna M, Hiltl S, Guo X H, Boker A and Zvelindovsky A V 2010 ACS Nano 4 2845
|
[80] |
Huh J, Jung J Y, Lee J U, Cho H, Park S, Park C and Jo W H 2011 ACS Nano 5 115
|
[81] |
Zhang J J, Jin G J and Ma Y Q 2005 Phys. Rev. E 71 051803
|
[82] |
Zhang J J, Jin G J and Ma Y Q 2005 Eur. Phys. J. E 18 359
|
[83] |
Zhang J J, Jin G J and Ma Y Q 2006 J. Phys.: Condens. Matter 18 837
|
[84] |
Ohta T and Ito A 1995 Phys. Rev. E 52 5250
|
[85] |
Ito A 1998 Phys. Rev. E 58 6158
|
[86] |
Komura S and Kodama H 1997 Phys. Rev. E 55 1722
|
[87] |
Roan J and Shakhnovich E I 1999 Phys. Rev. E 59 2109
|
[88] |
Oono Y and Puri S 1987 Phys. Rev. Lett. 58 836
|
[89] |
Puri S and Oono Y 1988 Phys. Rev. A 38 1542
|
[90] |
Oono Y and Puri S 1988 Phys. Rev. A 38 434
|
[91] |
Shinozaki A and Oono Y 1992 Phys. Rev. A 45 R2161
|
[92] |
Shinozaki A and Oono Y 1993 Phys. Rev. E 48 2622
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|