Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 056701    DOI: 10.1088/1674-1056/23/5/056701
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Diverse solid and supersolid phases of bosons in a triangular lattice

Chen Qi-Hui (陈起辉), Li Peng (李鹏)
The Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, College of Physical Science and Technology, Sichuan University, Chengdu 610064, China
Abstract  We investigate the ground state of bosons with long-range interactions in the large U limit on a triangular lattice. By mapping this system to the spin-1/2 XXZ model in a magnetic field, we can apply the spin wave theory to this study. We demonstrate how to construct the phase diagrams within the spin wave theory. The phase diagrams are given in an extensive parameter region, where, besides the superfluid phase, diverse solid and supersolid phases are shown to exist in this model. Especially, we find that the phase diagram obtained in this method is consistent with the one obtained previously using numerical techniques in the Ising limit. This confirms the effectiveness of our method. We analyze the stability of all the obtained supersolids and show that they will not be ruined by the quantum fluctuations. We observe that the quantum fluctuations in the stripe supersolid phase could be enhanced by the external field. We also discuss the relevance of our result with the experiment that may be realized with ultracold bosonic polar molecules in a triangular optical lattice.
Keywords:  supersolid      dipolar molecules      optical lattice  
Received:  12 September 2013      Revised:  14 November 2013      Accepted manuscript online: 
PACS:  67.80.kb (Supersolid phases on lattices)  
  37.10.Jk (Atoms in optical lattices)  
  05.30.Jp (Boson systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074177) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars of the Ministry of Education, China (Grant No. 20111139-10-2).
Corresponding Authors:  Li Peng     E-mail:  lipeng@scu.edu.cn
About author:  67.80.kb; 37.10.Jk; 05.30.Jp

Cite this article: 

Chen Qi-Hui (陈起辉), Li Peng (李鹏) Diverse solid and supersolid phases of bosons in a triangular lattice 2014 Chin. Phys. B 23 056701

[1] Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Nature 415 39
[2] Trotzky S, Cheinet P, Fölling S, Feld M, Schnorrberger U, Rey A M, Polkovnikov A, Demler E A, Lukin M D and Bloch I 2008 Science 319 295
[3] Fölling S, Trotzky S, Cheinet P, Feld M, Saers R, Widera A, Müller T and Bloch I 2007 Nature 448 1029
[4] Chen Y A, Nascimbéne S, Aidelsburger M, Atala M, Trotzky S and Bloch I 2011 Phys. Rev. Lett. 107 210405
[5] Sebby-Strabley J, Anderlini M, Jessen P S and Porto J V 2006 Phys. Rev. A 73 033605
[6] Duan L M, Demler E and Lukin M D 2003 Phys. Rev. Lett. 91 090402
[7] Jaksch S, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108
[8] Santos L, Baranov M A, Cirac J I, Everts H U, Fehrmann H and Lewenstein M 2004 Phys. Rev. Lett. 93 030601
[9] Soltan-Panachi P, Struck J, Hauke P, Bick A, Plenkers W, Meineke G, Becker C, Windpassinger P, Lewenstein M and Sengstock K 2011 Nat. Phy. 7 434
[10] Chen Y H, Wu W, Tao H S and Liu W M 2010 Phys. Rev. A 82 043625
[11] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[12] Ni K K, Ospelkaus S, de Miranda M H G, Peer A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S and Ye J 2008 Science 322 231
[13] Deiglmayr J, Grochola A, Repp M, Mörtlbauer K, Glück C, Lange J, Dulieu O, Wester R and Weidemüller M 2008 Phys. Rev. Lett. 101 133004
[14] Griesmaier A, Werner J, Hensler S, Stuhler J and Pfau T 2005 Phys. Rev. Lett. 94 160401
[15] Pollet L, Picon J D, Büchler H P and Troyer M 2010 Phys. Rev. Lett. 104 125302
[16] Yamamoto D, Danshita I and Sá de Melo C A R 2012 Phys. Rev. A 85 021601
[17] Lahaye T, Menotti C, Santos L, Lewenstein M and Pfau T 2009 Rep. Prog. Phys. 72 126401
[18] Zhang Y C, Wang H T, Shen S Q and Liu W M 2013 Chin. Phys. B 22 090501
[19] Islam R, Senko C, Campbell W C, Korenblit S, Smith J, Lee A, Edwards E E, Wang C C J, Freericks J K and Monroe C 2013 Science 340 583
[20] Murthy G, Arovas D and Auerbach A 1997 Phys. Rev. B 55 3104
[21] Melko R G, Paramekanti A, Burkov A A, Vishwanath A, Sheng D N and Balents L 2005 Phys. Rev. Lett. 95 127207
[22] Wessel S and Troyer M 2005 Phys. Rev. Lett. 95 127205
[23] Boninsegni M and Prokofév N 2005 Phys. Rev. Lett. 95 237204
[24] Wang F, Pollmann F and Vishwanath A 2009 Phys. Rev. Lett. 102 017203
[25] Heidarian D and Paramekanti A 2010 Phys. Rev. Lett. 104 015301
[26] Danshita I and Sá de Melo C A R 2009 Phys. Rev. Lett. 103 225301
[27] Ye J W 2006 Phys. Rev. Lett. 97 125302
[28] Kim E and Chan M H W 2004 Nature 427 225
[29] Kim D Y and Chan M H W 2012 Phys. Rev. Lett. 109 155301
[30] Ng K K, Chen Y C and Tzeng Y C 2010 J. Phys.: Condens. Matter 22 185601
[31] Wang Y M and Liang J Q 2012 Chin. Phys. B 21 060305
[32] Matsuda H and Tsuneto T 1970 Prog. Theor. Phys. 46 411
[33] Metcalf B D 1974 Phys. Lett. A 46 325
[34] Gan J Y, Zhang F C and Su Z B 2003 Phy. Rev. B 67 144427
[35] Sage J M, Sainis S, Bergeman T and DeMille D 2005 Phys. Rev. Lett. 94 203001
[36] Rieger T, Junglen T, Rangwala S A, Pinkse P W H and Rempe G 2005 Phys. Rev. Lett. 95 173002
[37] Wang D, Qi J, Stone M F, Nikolayeva O, Wang H, Hattaway B, Gensemer S D, Gould P L, Eyler E E and Stwalley W C 2004 Phys. Rev. Lett. 93 243005
[38] van de Meerakker S Y T, Smeets P H M, Vanhaecke N, Jongma R T and Meijer G 2005 Phys. Rev. Lett. 94 023004
[39] Pollet L, Picon J D, Büchler H P and Troyer M 2010 Phys. Rev. Lett. 104 125302
[40] Pupillo G, Micheli A, Büchler H P and Zoller P 2008 arXiv: cond-mat 0805.1896
[41] Büchler H P, Demler E, Lukin M, Micheli A, Prokofév N, Pupillo G and Zoller P 2007 Phys. Rev. Lett. 98 060404
[1] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[2] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[3] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[4] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[5] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[6] Theoretical calculation of the quadratic Zeeman shift coefficient of the 3P0o clock state for strontium optical lattice clock
Benquan Lu(卢本全), Xiaotong Lu(卢晓同), Jiguang Li(李冀光), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(4): 043101.
[7] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[8] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[9] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[10] Nonlinear dynamical stability of gap solitons in Bose-Einstein condensate loaded in a deformed honeycomb optical lattice
Hongjuan Meng(蒙红娟), Yushan Zhou(周玉珊), Xueping Ren(任雪平), Xiaohuan Wan(万晓欢), Juan Zhang(张娟), Jing Wang(王静), Xiaobei Fan(樊小贝), Wenyuan Wang(王文元), and Yuren Shi(石玉仁). Chin. Phys. B, 2021, 30(12): 126701.
[11] Fulde-Ferrell-Larkin-Ovchinnikov states in equally populated Fermi gases in a two-dimensional moving optical lattice
Jin-Ge Chen(陈金鸽), Yue-Ran Shi(石悦然), Ren Zhang(张仁), Kui-Yi Gao(高奎意), and Wei Zhang(张威). Chin. Phys. B, 2021, 30(10): 100305.
[12] Generating two-dimensional quantum gases with high stability
Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生). Chin. Phys. B, 2020, 29(7): 076701.
[13] A transportable optical lattice clock at the National Time Service Center
De-Huan Kong(孔德欢), Zhi-Hui Wang(王志辉), Feng Guo(郭峰), Qiang Zhang(张强), Xiao-Tong Lu(卢晓同), Ye-Bing Wang(王叶兵), Hong Chang(常宏). Chin. Phys. B, 2020, 29(7): 070602.
[14] Peierls-phase-induced topological semimetals in an optical lattice: Moving of Dirac points, anisotropy of Dirac cones, and hidden symmetry protection
Jing-Min Hou(侯净敏). Chin. Phys. B, 2020, 29(12): 120305.
[15] Cyclotron dynamics of neutral atoms in optical lattices with additional magnetic field and harmonic trap potential
Ai-Xia Zhang(张爱霞), Ying Zhang(张莹), Yan-Fang Jiang(姜艳芳), Zi-Fa Yu(鱼自发), Li-Xia Cai(蔡丽霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(1): 010307.
No Suggested Reading articles found!