Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 090313    DOI: 10.1088/1674-1056/22/9/090313
GENERAL Prev   Next  

The effects of the Dzyaloshinskii-Moriya interaction on the ground-state properties of the XY chain in a transverse field

Zhong Ming (钟鸣)a, Xu Hui (徐卉)a, Liu Xiao-Xian (刘小贤)a, Tong Pei-Qing (童培庆)a b
a Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023, China;
b Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing Normal University, Nanjing 210023, China
Abstract  The effects of the Dzyaloshinski-Moriya (DM) interaction on the ground-state properties of the anisotropic XY chain in a transverse field have been studied by means of correlation functions and entanglement. Different from the case without the DM interaction, the excitation spectra εk of this model are not symmetrical in the momentum space and are not always positive. As a result, besides the ferromagnetic (FM) and the paramagnetic (PM) phases, a gapless chiral phase is induced. In the chiral phase, the von Neumann entropy is proportional to log2L (L is the length of a subchain) with the coefficient A≈1/3, which is the same as that of the XY chain in a transverse field without the DM interaction for γ=0 and 0<h ≤1. And in the vicinity of the critical point between the chiral phase and the FM (or PM) phase, the behaviors of the nearest-neighbor concurrence and its derivative are like those for the anisotropy transition.
Keywords:  Dzyaloshinskii-Moriya interaction      the XY chain in a transverse field      quantum entanglement      ground-state properties  
Received:  19 December 2012      Revised:  27 March 2013      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  73.43.Nq (Quantum phase transitions)  
  75.40.Cx (Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11205090 and 11175087) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 12KJB140008).
Corresponding Authors:  Tong Pei-Qing     E-mail:  pqtong@njnu.edu.cn

Cite this article: 

Zhong Ming (钟鸣), Xu Hui (徐卉), Liu Xiao-Xian (刘小贤), Tong Pei-Qing (童培庆) The effects of the Dzyaloshinskii-Moriya interaction on the ground-state properties of the XY chain in a transverse field 2013 Chin. Phys. B 22 090313

[1] Dzyaloshinshy I 1958 J. Phys. Chem. Solids 4 241
[2] Moriya T 1960 Phy. Rev. 120 91
[3] Seki S, Yamasaki Y, Soda M, Matsuura M, Hirota K and Tokura Y 2008 Phys. Rev. Lett. 100 127201
[4] Li Q C, Dong S and Liu J M 2008 Phys. Rev. B 77 054442
[5] Sergienko I A and Dagotto E 2006 Phys. Rev. B 73 094434
[6] Oshikawa M and Affleck I 1997 Phys. Rev. Lett. 79 2883
[7] Zhao J Z, Wang X Q, Xiang T, Su Z B and Yu L 2003 Phys. Rev. Lett. 90 207204
[8] Kohgi M, Iwasa K, Mignot J M, Fak B, Gegenwart P, Lang M, Ochiai A, Aoki H and Suzuki T 2001 Phys. Rev. Lett. 86 2439
[9] Veillette M Y, Chalker J T and Coldea R 2005 Phys. Rev. B 71 214426
[10] Tsukada I, Takeya J T, Masuda T and Uchinokura K 2001 Phys. Rev. Lett. 87 127203
[11] Messio L, Cepas O and Lhuillier C 2010 Phys. Rev. B 81 064428
[12] Huh Y, Fritz L and Sachdev S 2010 Phys. Rev. B 81 144432
[13] Wernsdorfer W, Stamatatos T C and Christou G 2008 Phys. Rev. Lett. 101 237204
[14] Zakeri K, Zhang Y, Prokop J, Chuang T H, Sakr N, Tang W X and Kirschner J 2010 Phys. Rev. Lett. 104 137203
[15] Jafari R, Kargarian M, Langari A and Siahatgar M 2008 Phys. Rev. B 78 214414
[16] Jafari R and Langari A 2008 arXiv: 0812.1862v1[cond-mat.str-el]
[17] Derzhko O, Verkholyak T, Krokhmalshii T and Büttner H 2006 Phys. Rev. B 73 214407
[18] Verkholyak T, Derzhko O, Krokhmalskii T and Stolze J 2007 Phys. Rev. B 76 144418
[19] Kádár Z and Zimborás Z 2010 Phys. Rev. A 82 032334
[20] Kargarian M, Jafari R and Langari A 2009 Phys. Rev. A 79 042319
[21] Li Y F and Kong X M 2013 Chin. Phys. B 22 037502
[22] Chen T, Huang Y X, Shan C J, Li J X, Liu J B and Liu T K 2010 Chin. Phys. B 19 050302
[23] Wang L C, Yan J Y and Yi X X 2010 Chin. Phys. B 19 040512
[24] Liu B Q, Shao B, Li J, Zou J and Wu L A 2011 Phys. Rev. A 83 052112
[25] Siskens T J, Capel H W and Gaemers K J F 1975 Physica 79A 259
[26] Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517
[27] Wootters W 1998 Phys. Rev. Lett. 80 2245
[28] Bennett C, Bernstein H, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[29] Osterloh A, Amico L, Falci G and Fazio R 2002 Nature 416 608
[30] Pfeuty P 1970 Ann. Phys. 57 79
[31] Zhong M and Tong P Q 2010 J. Phys. A: Math. Theor. 43 505302
[32] Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902
[33] Holzhey C, Larsen F and Wilczek F 1994 Nucl. Phys. B 424 443
[34] Lieb E, Schultz T and Mattis D 1961 Ann. Phys. 16 407
[35] Tong P Q and Liu X X 2006 Phys. Rev. Lett. 97 017201
[36] Kawamura H 1988 Phys. Rev. B 38 4916
[37] Stolze J, Viswanath V S and Müller G 1992 Z. Phys. B 89 45
[38] de Oliveira T R, Miranda E, Rigolin G and de Oliveira M C 2008 Phys. Rev. A 77 032325
[39] Barouch E and McCoy B 1971 Phys. Rev. A 3 786
[40] McCoy B, Barouch E and Abraham D 1971 Phys. Rev. A 4 2331
[41] Müller G and Shrock R 1985 Phys. Rev. B 32 5845
[42] Keating J P and Mezzadri F 2004 Commun. Math. Phys. 252 543
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[3] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[4] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[5] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[6] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[7] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[8] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[9] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[10] Exact soliton solutions in anisotropic ferromagnetic wires with Dzyaloshinskii-Moriya interaction
Qiu-Yan Li(李秋艳), Dun-Zhao(赵敦), and Zai-Dong Li(李再东). Chin. Phys. B, 2021, 30(1): 017504.
[11] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[12] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[13] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[14] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[15] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
No Suggested Reading articles found!