Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 086101    DOI: 10.1088/1674-1056/22/8/086101
RAPID COMMUNICATION Prev   Next  

Synthesis of nitrogen-doped single-walled carbon nanotubes and monitoring of doping by Raman spectroscopy

Wu Mu-Hong (吴慕鸿)a b, Li Xiao (李晓)c, Pan Ding (潘鼎)b, Liu Lei (刘磊)b, Yang Xiao-Xia (杨晓霞)b, Xu Zhi (许智)b, Wang Wen-Long (王文龙)b, Sui Yu (隋郁)a, Bai Xue-Dong (白雪冬)b
a Department of Physics, Harbin Institute of Technology, Harbin 150001, China;
b Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
c International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
Abstract  Nitrogen-doped single-walled carbon nanotubes (CNx-SWNTs) with tunable dopant concentrations were synthesized by chemical vapor deposition (CVD), and their structure and elemental composition were characterized by using transmission electron microscopy (TEM) in combination with electron energy loss spectroscopy (EELS). By comparing the Raman spectra of pristine and doped nanotubes, we observed the doping-induced Raman G band phonon stiffening and 2D band phonon softening, both of which reflect doping-induced renormalization of the electron and phonon energies in the nanotubes and behave as expected in accord with the n-type doping effect. On the basis of first principles calculations of the distribution of delocalized carrier density in both the pristine and doped nanotubes, we show how the n-type doping occurs when nitrogen heteroatoms are substitutionally incorporated into the honeycomb tube-shell carbon lattice.
Keywords:  single-walled carbon nanotubes      nitrogen doping      chemical vapor deposition      Raman spectroscopy  
Received:  23 April 2013      Revised:  20 May 2013      Accepted manuscript online: 
PACS:  61.48.De (Structure of carbon nanotubes, boron nanotubes, and other related systems)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  63.22.Gh (Nanotubes and nanowires)  
  78.30.Na (Fullerenes and related materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11004230, 51172273, 11290161, and 11027402), the National Key Basic Research Program of China (Grant Nos. 2012CB933003 and 2013CB932603), and the Innovative Project of the Chinese Academy of Sciences (Grant No. KJCX2-YW-W35).
Corresponding Authors:  Wang Wen-Long, Sui Yu, Bai Xue-Dong     E-mail:  wwl@aphy.iphy.ac.cn; suiyu@hit.edu.cn; xdbai@aphy.iphy.ac.cn

Cite this article: 

Wu Mu-Hong (吴慕鸿), Li Xiao (李晓), Pan Ding (潘鼎), Liu Lei (刘磊), Yang Xiao-Xia (杨晓霞), Xu Zhi (许智), Wang Wen-Long (王文龙), Sui Yu (隋郁), Bai Xue-Dong (白雪冬) Synthesis of nitrogen-doped single-walled carbon nanotubes and monitoring of doping by Raman spectroscopy 2013 Chin. Phys. B 22 086101

[1] Arnold M S, Green A A, Hulvat J F, Stupp S I and Hersam M C 2006 Nat. Nanotech. 1 60
[2] Liu C H, Liu Y Y, Zhang Y H, Wei R R and Zhang H L 2009 Phys. Chem. Chem. Phys. 11 7257
[3] Bachilo S M, Balzano L, Herrera J E, Pompeo F, Resasco D E and Weisman R B 2003 J. Am. Chem. Soc. 125 11186
[4] Li X L, Tu X M, Zaric S, Welsher K, Seo W S, Zhao W and Dai H J 2007 J. Am. Chem. Soc. 129 15770
[5] Zheng L W, Hu L Q, Xiao X J, Yang F, Lin H and Guo T L 2011 Chin. Phys. B 20 128502
[6] Maciel I O, Campos-Delgado J, Cruz-Silva E, Pimenta M A, Sumpter B G, Meunier V, López-Urías F, Muñoz-Sandoval E, Terrones H, Terrones M and Jorio A 2009 Nano Lett. 9 2267
[7] Ayala P, Arenal R, Loiseau A, Rubio A and Pichler T 2010 Rev. Mod. Phys. 82 1843
[8] Ayala P, Arenal R, Rümmeli M, Rubio A and Pichler T 2010 Carbon 48 575
[9] Jin L, Fu H G, Xie Y and Yu H T 2012 Chin. Phys. B 21 057901
[10] Susi T, Kaskela A, Zhu Z, Ayala P, Arenal R, Tian Y, Laiho P, Mali J, Nasibulin A G, Jiang H, Lanzani G, Stephan O, Laasonen K, Pichler T, Loiseau A and Kauppinen E I 2011 Chem. Mater. 23 2201
[11] Liu Y, Jin Z, Wang J Y, Cui R L, Sun H, Peng F, Wei L, Wang Z X, Liang X L, Peng L M and Li Y 2011 Adv. Funct. Mater. 21 986
[12] Monteiro F H, Larrude D G, Maia M, da Costa E H, Terrazos L A, Capaz R B and Freire F L Jr 2012 J. Phys. Chem. C 116 3281
[13] Wang E G 2006 J. Mater. Res. 21 2767
[14] Jorio A, Dresselhaus G and Dresselhaus M S 2008 Carbon Nanotubes: Advanced Topics in Synthesis, Properties and Applications (Berlin: Springer-Verlag)
[15] Maciel I O, Anderson N, Pimenta M A, Hartschuh A, Qian H H, Terrones M, Terrones H, Campos-Delgado J, Rao A M, Novotny L and Jorio A 2008 Nat. Mater. 7 878
[16] Tsang J C, Freitag M, Perebeinos V, Liu J and Avouris Ph 2007 Nat. Nanotech. 2 725
[17] Das A, Sood A K, Govindaraj A, Saitta A M, Lazzeri M, Mauri F and Rao C N R 2007 Phys. Rev. Lett. 99 136803
[18] Pisana S, Lazzeri M, Casiraghi C, Novoselov K S, Geim A K, Ferrari A C and Mauri F 2007 Nat. Mater. 6 198
[19] Das A, Pisana S, Chakraborty B, Piscanec S, Saha S K, Waghmare U V, Novoselov K S, Krishnamurthy H R, Geim A K, Ferrari A C and Sood A K 2008 Nat. Nanotech. 3 210
[20] Wang W L, Bai X D, Xu Z, Liu S and Wang E G 2006 Chem. Phys. Lett. 419 81
[21] Wang W L, Bai X D, Liu K H, Xu Z, Golberg D, Bando Y and Wang E G 2006 J. Am. Chem. Soc. 128 6530
[22] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[23] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[24] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[25] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[26] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[27] Glerup M, Steinmetz J, Samaille D, Stéphan O, Enouz S, Loiseau A, Roth S and Bernier P 2004 Chem. Phys. Lett. 387 193
[28] Rao A M, Eklund P C, Bandow S, Thess A and Smalley R E 1997 Nature 388 257
[29] Dresselhaus M S, Dresselhaus G, Saito R and Jorio A 2005 Phys. Rep. 409 47
[30] Piscanec S, Lazzeri M, Mauri F, Ferrari A C and Robertson J 2004 Phys. Rev. Lett. 93 185503
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[3] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[4] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[5] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[6] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[7] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[8] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[9] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[10] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[11] Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor
Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128106.
[12] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[13] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[14] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[15] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
No Suggested Reading articles found!